
Using CDDL to Model Weave TLV
Structured Data

Technical Specification

Revision 0.3
2017-09-06

Abstract
When modeling structured data encoded in the Weave TLV Format [WTLV], having a
well-defined data modeling language is helpful. A suitable structured data modeling language
designed especially for the Weave TLV Format need not be invented, because a suitable one
already exists: the CBOR Data Definition Language (CDDL) [ID.CDDL]. This document presents
a congruency between all possible texts encoded in the Weave TLV Format and a contrived
encoding of those texts in Concise Binary Object Representation (CBOR) [RFC7049].
Accordingly, this document also specifies a CDDL preamble providing type and group
definitions for use in modeling texts so encoded, and which may therefore be used in modeling
structured data for presentation in the native Weave TLV Format.

Nest Labs, Inc, 2017
Page 1 of 12

Introduction
The Weave TLV Format [WTLV] is a concise structured data interchange language with the
following basic features:

● Portable representations for elements of primitive type, e.g. booleans, fixed width
machine integers, IEEE 754 floating point numbers, octet sequences and text strings
encoded with UTF-8.

● Three types of container element: array, map and path.
● Attribute tags applied to each primitive and container element.

This document describes a canonical translation for all documents encoded in Weave TLV
Format to and from their corresponding encoding as documents in the Concise Binary Object
Representation (CBOR) [RFC7049]. Additionally, definitions are further provided in the CBOR
Data Definition Language [ID.CDDL] for use in modeling structured data for interchange with the
Weave TLV Format.

Table Of Contents
Abstract

Introduction

Table Of Contents

Overview

Detailed Requirements
Primitive Element Types
Tag Categories
Container Types
Reserved Element Types

Embedding Weave TLV In CBOR Byte Strings

CDDL Preamble

Comparisons
Device Identity Trait

Nest Learning Thermostat (Third Generation) in Weave TLV Format

References
Normative References

Nest Labs, Inc, 2017
Page 2 of 12

Informative References

Overview
Every text encoded in the Weave TLV Format comprises an unbounded sequence of one or
more Weave TLV elements. Logically, an element consists of an optional tag and a value
annotated by its element type, which is either a primitive type or a container type when it
comprises a sequence of zero or more contained elements.

Encoding the Weave TLV Format in CBOR is straightforward. For each element type, the
corresponding CBOR representation (major and minor numbers) is identified. Some new CBOR
tags are defined, one for each of the categories of Weave TLV tag: profile-specific and
context-specific. Elements using the anonymous Weave TLV tag are encoded as untagged
CBOR items. An additional CBOR tag is defined for distinguishing path container elements from
array container elements, which are constrained to contain only anonymous elements.

Finally, a new CBOR tag is defined for identifying CBOR byte string items (major type 2) that are
specifically encoded in the Weave TLV Format. A formal request is additionally made to IANA
for this tag to be registered in the Concise Binary Object Representation (CBOR) Tags registry
[CBORTAGS].

Detailed Requirements
In this section, the translation of Weave TLV Format elements into their corresponding CBOR
items is presented in three sections. First, the CBOR representations of the various Weave TLV
element types are defined (using the CBOR Data Definition Language [ID.CDDL]). Next, the
new CBOR tags corresponding to the Weave TLV tag categories are defined.

Primitive Element Types
The following table lists the Weave TLV Format primitive element types and their corresponding
CBOR representation written as a CDDL type.

Type Code Type Description CDDL Type

00000 Signed integer, 1 octet int .size 1

00001 Signed integer, 2 octets int .size 2

00010 Signed integer, 4 octets int .size 4

00011 Signed integer, 8 octets int .size 8

Nest Labs, Inc, 2017
Page 3 of 12

00100 Unsigned integer, 1 octet uint .size 1

00101 Unsigned integer, 2 octets uint .size 2

00110 Unsigned integer, 4 octets uint .size 4

00111 Unsigned integer, 8 octets uint .size 8

01000 Boolean false false

01001 Boolean true true

01010 Floating point number, 4 octets float32

01011 Floating point number, 8 octets float64

01100 UTF-8 text, 1 octet length tstr .size (0..0xff)

01101 UTF-8 text, 2 octet length tstr .size (0..0xffff)

01110 UTF-8 text, 4 octet length tstr .size (0..0xffffffff)

01111 UTF-8 text, 8 octet length tstr .size (0..0xffffffffffffffff)

10000 Octet sequence, 1 octet length bstr .size (0..0xff)

10001 Octet sequence, 2 octet length bstr .size (0..0xffff)

10010 Octet sequence, 4 octet length bstr .size (0..0xffffffff)

10011 Octet sequence, 8 octet length bstr .size (0..0xffffffffffffffff)

10100 Null nil

The indefinite length octet sequence and text string minor types are not used in the CBOR
representation of Weave TLV.

Tag Categories
The tag control field in the encoding of elements in the Weave TLV Format indicates both the
category of the tag and the type of the value encoded in the tag. Four new CBOR tag values are
defined for used in encoding Weave TLV tag control field values, as follows:

● Tag <X> (value TBD): associates a Context-specific tag number with a Weave TLV
value.

● Tag <C> (value TBD): associates a Profile-specific tag number for the Weave Common

Profile with a Weave TLV value.

Nest Labs, Inc, 2017
Page 4 of 12

● Tag <I> (value TBD): associates a Profile-specific tag number for the profile with the

vendor id and profile id that is implicitly associated with the context of the encoded text
with a Weave TLV value.

● Tag <Q> (value TBD): associates a Profile-specific tag number for the profile explicitly

listed in the Weave Profile Registry by its vendor id and profile id with a Weave TLV
value.

Tag Control Tag Description CDDL Type

000 Anonymous Not defined.

001 Context-specific #6.<X>(uint .size 1)

010 Common profile, 2 octets #6.<C>(uint .size 2)

011 Common profile, 4 octets #6.<C>(uint .size 4)

100 Implicit profile, 2 octets #6.<I>(uint .size 2)

101 Implicit profile, 4 octets #6.<I>(uint .size 4)

110 Fully-qualified profile, 6 octets #6.<Q>([
 uint .size 2,
 uint .size 2,
 uint .size 2
])

111 Fully-qualified profile, 8 octets #6.<Q>([
 uint .size 2,
 uint .size 2,
 uint .size 4
])

Anonymous elements in Weave TLV are encoded in CBOR as untagged items. The CDDL
types in each of the remaining rows of the table above are collected into a type named
wtlv-tag that comprises the choice.

Container Types
The following table lists the Weave TLV Format container element types and their
corresponding CBOR representation written as a CDDL type, where the group wtlv-element
represents any Weave TLV element (tagged or untagged), the type wtlv-tag is any Weave
TLV tag value, and wtlv-anon is any untagged Weave TLV element.

The CDDL definition of the wtlv-element group follows:

Nest Labs, Inc, 2017
Page 5 of 12

wtlv-element = $$wtlv-element

$$wtlv-element //= wtlv-anon
$$wtlv-element //= (wtlv-tag => wtlv-anon)

Additionally, a CBOR tag is defined for use in identifying arrays (major type 4) that represent
Weave TLV path elements.

● Tag <S> (value TBD): identifies an array of elements encapsulated in a Weave TLV
Format path element.

This definition is used in the following table of container type definitions:

Type Code Type Description CDDL Type

10101 Structure { * wtlv-tag => wtlv-anon }

10110 Array [* wtlv-anon]

10111 Path #6.<S>([* $$wtlv-element])

11000 End of container #7.31

Finally the wtlv-anon type is defined as the choice of all untagged primitive and container types
from the tables above.

Note well: the End of container element type in the Weave TLV Format is functionally equivalent
to the Break simple value in CBOR. It is used to mark the end of an array or map of indefinite
length in the same way that container types are terminated in the Weave TLV Format by the
presence of an End of Container element.

Reserved Element Types
The element type codes 11001 to 11111 were not defined in Weave TLV when this
specification was drafted. Their translation into a CBOR representation is accordingly not yet
defined.

Embedding Weave TLV In CBOR Byte Strings
To facilitate the inclusion of Weave TLV Format data in CBOR byte string (major type 4) items,
this section defines an appropriate CBOR tag.

Nest Labs, Inc, 2017
Page 6 of 12

● Tag <W> (value TBD): identifies a byte string encoded in Weave TLV Format.

IANA is requested to assign tag <W> to any available code point in the First Come First Served
range 256 to 18446744073709551615 with a Data item indicating major type 4 and Semantics indicating
“Weave TLV Format” encoding.

CDDL Preamble
The following addition to the CDDL preamble is defined for use in modeling structured data
encoded in the Weave TLV Format, as well as in the corresponding translation of such data into
its equivalent CBOR representation.

; Tag number
wtlv-tag-num = uint .size 4

; Tags with only a tag number
wtlv-tag-common = #6.<C>(wtlv-tag-num) ; Weave Common Profile tag
wtlv-tag-implicit = #6.<I>(wtlv-tag-num) ; Implicit profile-specific tag
wtlv-tag-context = #6.<X>(wtlv-tag-num) ; Context-specific tag

; Tag qualified by vendor identifier and profile number
wtlv-tag-qualified = #6.<Q>([

uint .size 2, ; Weave Profile Vendor Identifier
uint .size 2, ; Weave Profile Number
wtlv-tag-num, ; Registered tag number

])

; Tags
wtlv-tag = (

wtlv-tag-common / wtlv-tag-implicit / wtlv-tag-context /
wtlv-tag-qualified

)

; Forward declarations of sockets for element group and anonymous type
wtlv-element = $$wtlv-element
wtlv-anon = $wtlv-anon

; Elements (anonymous and tagged values)
$$wtlv-element //= (wtlv-anon)
$$wtlv-element //= (wtlv-tag => wtlv-anon)

; Values (primitives and containers)
$wtlv-anon /= nil
$wtlv-anon /= bool
$wtlv-anon /= int .size 8
$wtlv-anon /= uint .size 8

Nest Labs, Inc, 2017
Page 7 of 12

$wtlv-anon /= float32_64
$wtlv-anon /= bstr .size (0..0xffffffffffffffff)
$wtlv-anon /= tstr .size (0..0xffffffffffffffff)
$wtlv-anon /= { * wtlv-tag => wtlv-anon }
$wtlv-anon /= [* wtlv-anon]
$wtlv-anon /= #6.<S>([* wtlv-element])

; Tag generics (constructor functions)
wtlv-tag-mkc<n> = #6.<C>(n) .within wtlv-tag-common
wtlv-tag-mki<n> = #6.<I>(n) .within wtlv-tag-implicit
wtlv-tag-mkq<n> = #6.<Q>(n) .within wtlv-tag-qualified
wtlv-tag-mkx<n> = #6.<X>(n) .within wtlv-tag-context
wtlv-tag-mks<s> = #6.<S>(s) .within #6.<S>([* $$wtlv-element])

Editor’s Note: The tokens <C>, <I>, <Q>, <S> and <X> in the preceding table need not actually
be defined by IANA in its Concise Binary Object Representation (CBOR) Tags [CBORTAGS]
registry. They are only used in this document for illustrative purposes.

Note the use of the generic types used for constructing tags of the various categories, i.e. the
wtlv-tag-mkc<n>, wtlv-tag-mki<n>, wtlv-tag-mkq<n> and wtlv-tag-mkx<n> definitions.
These are used in the examples below to define constant tag values in the CDDL provided to
demonstrate how to model data for interchange in the Weave TLV Format.

As an initial example, the following CDDL excerpt is a model of a Weave TLV data structure
commonly used in the Weave Schema [SCHEMA], i.e. an element that is either a A) UTF-8 text
string of maximum length 256 octets, or B) an unsigned 64-bit integer treated as a reference to
a well-known string value.

WeaveStringRef = uint .size 8
WeaveString256 = tstr .size (0..0xff)

WeaveString = WeaveStringRef / WeaveString256

Using the WeaveString data model shown in the example above, the following CDDL excerpt is
a model of the Weave TLV data structure comprising the Weave Device Identity Trait [DEV.ID].

Vendor-nestlabs = 0x235A ; Nest Labs, Inc. vendor identifier
Profile-device-trait = 0x0017 ; Device Identity Trait profile number

; Fully-qualified tag of path to properties
Tag-trait = wtlv-tag-mkq<[Vendor-nestlabs, Profile-device-trait, 0]>

; Context-specific tags
Tag-vendor-id = wtlv-tag-mkx<1>
Tag-vendor-id-desc= wtlv-tag-mkx<2>
Tag-product-id = wtlv-tag-mkx<3>

Nest Labs, Inc, 2017
Page 8 of 12

Tag-product-id-desc = wtlv-tag-mkx<4>
Tag-product-rev = wtlv-tag-mkx<5>
Tag-serial-num = wtlv-tag-mkx<6>
Tag-sw-version = wtlv-tag-mkx<7>
Tag-manufacture-date = wtlv-tag-mkx<8>

; Property types
Prop-vendor-id = (Tag-vendor-id => 1..65534)
Prop-vendor-id-desc = (Tag-vendor-id-desc => WeaveString)
Prop-product-id = (Tag-product-id => 1..65534)
Prop-product-id-desc = (Tag-product-id-desc => WeaveString)
Prop-product-rev = (Tag-product-rev => uint .size 2)
Prop-serial-num = (Tag-serial-num => tstr .size 32)
Prop-sw-version = (Tag-sw-version => tstr .size 32)
Prop-manufacture-date = (Tag-manufacture-date => tstr .size 32)

Properties = {

Prop-vendor-id,
? Prop-vendor-id-desc,
Prop-product-id,
? Prop-product-id-desc,
Prop-product-rev,
Prop-serial-num,
Prop-sw-version,
? Prop-manufacture-date, ; constraint: ISO-8601 formatted

}

Trait = [Tag-trait => wtlv-tag-mks<[Properties]>]

In the example above, the Device Identity trait is a fully-qualified profile-specific tag identifying
the Device Identity Profile Number (0x0017) in the Nest Labs Vendor Identity (0x235A)
associated to a Weave TLV Format path element containing one encapsulated element, which
is the structure of the properties defined in the trait, some of which are optional and some of
which are required, each with the type defined for it accordingly.

Editor’s Note: it would probably be better to define the type of the Manufacturing Date property
to have the tdate .size 32 type, except the wtlv-anon type defined in the preamble above
does not actually admit UTF-8 text strings tagged with non-Weave CBOR tags. Not sure how to
deal with that issue. The Weave TLV Format doesn’t actually have a way to identify that a text
string has a particular format like CBOR does, and the encoding defined in this document
therefore doesn’t try to add one.

Nest Labs, Inc, 2017
Page 9 of 12

Comparisons
This section provides a comparison of the octet sequences produced by encoding data in the
Weave TLV Format and by encoding the same date in its corresponding translation into CBOR.

Editor’s note: to facilitate this illustration, it is necessary to assign temporary code points for the
<C>, <I>, <S>, <Q> and <X> CBOR tags introduced in this document without any official
registration by IANA. The <C>, <I>, <Q> and <X> tags are commonly used in the Weave TLV
translation to CBOR, so the optimal case would be for these to be assigned from the Standards
Action Required range 0 to 23, so they could be encoded in the minor number of major type 0.
That’s more than a little optimistic, but assuming it’s possible simplifies the illustration.

The new CBOR tags defined in this document are assigned temporary values in the following
table solely to facilitate the illustration in this section:

Ta
g

CDDL Representation Type Semantic Description

6 wtlv-tag-num <C> Common profile-specific tag number.

7 wtlv-tag-num <I> Implicit profile-specific tag number.

9 [
 uint .size 2,
 uint .size 2,
 wtlv-tag-num
]

<Q> Fully-qualified profile-specific tag number.

8 wtlv-tag-num <X> Context-specific tag number.

95 [* wtlv-element] <S> Path container.

The following sections present examples of data structures encoded first in the Weave TLV
Format and second in the CBOR translation of Weave TLV structured data presented in this
document.

Device Identity Trait
In this section, the octet sequence encoding the Device Identity Trait for a Nest Learning
Thermostat (Third Generation) in Weave TLV Format is compared with the octet sequence
encoding the same information in the CBOR translation of Weave TLV defined above.

Nest Labs, Inc, 2017
Page 10 of 12

Nest Learning Thermostat (Third Generation) in Weave TLV Format
The octet sequence representing the Device Identity Trait for the Nest Learning Thermostat
(Third Generation) is typically about 39 octets in length. The following table presents an
annotated description of each Weave TLV Format element.

Element Name Octets Weave TLV Annotated Encoding

Vendor identifier 25 01 5a 23 Control: context-tag, unsigned 16-bit
Tag: 1
Value: 0x235A

Product identifier 24 02 0a Control: context-tag, unsigned 8-bit
Tag: 2
Value: 0xA

Product revision 24 03 01 Control: context-tag, unsigned 8-bit
Tag: 3
Value: 1

Serial Number 2c 06 10 30
39 41 41 30
31 41 43 43
33 31 35 30
5a 44 45

Control: context-tag, UTF-8 string, length 16
Tag: 6
Value: “09AA01AC33150ZDE”

Software Version 2c 07 07 35
2e 31 2e 38
2d 33

Control: context-tag, UTF-8 string, length 7
Tag: 7
Value: “5.1.8-3”

For comparison, the same data would be encoded in 40 octets with the CBOR translation of the
Weave TLV Format as shown in the following similar table:

Element Name Octets CBOR Diagnostic Encoding

Vendor identifier C8 01 19 23
5a

8(1) 0x235A

Product identifier C8 02 0a 8(2) 0x000A

Product revision C8 03 01 8(3) 0x0001

Serial Number C8 06 70 30
39 41 41 30
31 41 43 43
33 31 35 30
5a 44 45

8(6) “09AA01AC33150ZDE”

Nest Labs, Inc, 2017
Page 11 of 12

Software Version C8 07 67 35
2e 31 2e 38
2d 33

8(7) “5.1.8-3”

Editor’s note: the length of the translated encoding would be longer if the code points assigned
to the <C>, <I>, <Q> and <X> CBOR tags were chosen from the Specification Required range
instead of the Standards Action range. Instead of encoding tag numbers for each element with
two octets, it would require three octets. If chosen from the First Come First Served range, it
would require at least four.

References

Normative References

ID.CDDL C. Vigano and H. Berkholz, “CBOR data definition language (CDDL): a notational
convention to express CBOR data structures”,
I-D.greevenbosch-appsawg-cbor-cddl-10, March 2017.

RFC7049 C. Bormann and P. Hoffman, “Concise Binary Object Representation (CBOR)”,
RFC 7049, October 2013

WTLV Weave TLV, Specification

Informative References

CBORTAGS Concise Binary Object Representation (CBOR) Tags, IANA registry.

DEV.ID Weave: Device Identity Trait: Design Specification

SCHEMA Weave Schema Guide, v0.3

Nest Labs, Inc, 2017
Page 12 of 12

https://docs.google.com/document/d/1VWG79nUK8C9NaVk8BoDYTr4F1ZJyjSu_pAIRfKUvWgY/
https://tools.ietf.org/html/rfc7049
https://docs.google.com/document/d/1ejZ8HMxDEcbwWvqATDe8fI1o54MUJkRgUq52sDC1Grs/
https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml
https://tools.ietf.org/html/draft-greevenbosch-appsawg-cbor-cddl-10
https://docs.google.com/document/d/1T-lNw-3WRf4l_MP43MftDt9Z9p7wIemb36wwAgUQPFM/

