WDM Next Protocol Specification

v0.4.11 3/8/2017

1. Change history

2. Overview

2.1. Related documents

2.2. Diagram legends

2.3. Language to specify Weave TLV

3. Architecture overview and typical deployment

3.1. Resources, trait profiles, and trait instances

3.2. Versions

3.3. Weave TLV and WDM adoption

3.4. Transport and exchange context

3.5. Security

4. Model for data hosted on publishers

4.1. Paths

4.2. Dictionary

5. Supported dialogues

5.1. Overview

5.2. Data change model

5.2.1. Changes in dictionaries

5.2.2. Changes in arrays

5.2.3. Changes in the root path

5.3. Subscription

5.3.1. One way subscription

5.3.2. Canceling subscriptions

5.3.3. Notifications and changes

5.3.4. Version list in subscribe requests and changes

WDM Next Protocol Specification

5.3.5. Liveness and liveness check

5.3.6. Mutual subscription and bounded liveness

5.4. Views

5.5. Update

5.5.1. Version for optimistic locking

5.5.2. Expiry time

5.5.3. Custom arguments

5.5.4. WDM subscription

5.4.5. In progress message

5.5.6. Message flow overview

5.5.7. Door lock as an update request

5.6. Custom WDM commands

5.7. Events

5.7.1. Event data definition

5.7.2. Event delivery in WDM

5.7.3. Event forwarding

5.7.4. Event loss detection

6. Message format

6.1. Profile ID and message types

6.1.1. Profile ID

6.1.2. Message type

6.2. Status codes

6.3. Primitive TLV elements

6.3.1. Path
6.3.2. Path list

6.3.3. Version list

6.4. Data element

Nest Labs, Inc., 2016

Page 1 of 67

WDM Next Protocol Specification

6.4.1. Data list

6.4.2. Events
6.4.3. Event list

6.5. Subscription initiation

6.5.1. Subscribe request

6.5.2. Subscribe response

6.6. Subscribe cancellation

6.6.1. Subscribe cancel request

6.6.2. Subscribe cancel response (status report)

6.7. Subscribe liveness

6.7.1. Subscribe confirm request

6.8. Subscribe confirm response (status report)

6.9. Notification of changes

6.9.1. Notification request

6.9.2. Notification response (status report)

6.10. View

6.10.1. View request

6.10.2. View response

6.11. Update

6.11.1. Update request

6.11.2. In progress

6.11.3. Update response (status report)

6.12. Custom WDM command

6.12.1. Command request

6.12.2. In progress

6.12.3. Command response

7. Reference

Nest Labs, Inc., 2016

Page 2 of 67

WDM Next Protocol Specification

1. Change history

Version

Date

Notes

0.1

1/13/2016

Initial draft

0.2

1/30/2016

1. Change name to WDM Next.

2. Add data model section.

3. Add more description of error cases, add flow for queued
events, address other review comments.

4. Merge message format into this document.

0.2.1

2/2/2016

1. Added a requirement for the publisher to send Update
response only after it has seen Notification responses for all
important traits.

2. Change Publisher State to Subscription State according to
review comments.

0.2.2

2/8/2016

. No Subscribe Confirm from Publisher to Client
. Mandatory timeout for Subscription request and response

N =

0.2.3

2/10/2016

Revert timeout for Subscription request and response to
become optional

0.24

2/17/2016

1. Added warning that the one way subscription state could be
removed soon.

2. Added stronger statement about Subscription response
bring clients to reasonable alignment.

0.3.0

2/19/2016

1. Change name from WDMDataElementData to
WDMDataElementMergeData.

2. Remove Subscription State message because now it
belongs to another Weave profile TBD.

WARNING: We’re about to add two flags in DataElement and

add more description about their use in View responses and

Notification requests.

0.3.1

2/19/2016

Remove TLV Array as an option to be the root of WDM data
model

0.4.0

4/8/2016

1. Remove support for queued traits, hence removed
WDMDataFElementDiscontiguous

2. Add event delivery feature. Add chapter and reference to
explain event delivery. Modified Subscribe Request,
Subscribe Response, and Notification Request to support
events.

Nest Labs, Inc., 2016

Page 3 of 67

WDM Next Protocol Specification

3. Notification rejection has been changed to not use data
elements, and not conveying the current data on the client.

4. Change all profile tags to context specific tags, and mandate
encoding of them to be in “tag order”

0.41 4/25/2016 Add SystemTimestamp, rename Timestamp to UTC timestamp.

0.4.2 4/26/2016

—

. Address review comments

. Enforce implicit profile in TLV to be set to Dictionary Key
profle

. Explicitly allow unknown TLV tags in Events

N

w

0.4.3 5/6/2016

—

Remove DataElementReasonForRejection

Add support for version update but empty data in
notification requests.

Note: Excessive event related material will be removed shortly
as they will be available in event-specific documents [5]

A

044 5/23/2016 LastVendedEventldList removed from SubscribeRequest.
0.4.5 5/26/2016 A few tag definitions for events in Subscribe Request added.
04.6 6/6/2016 Make path list optional in subscribe requests, for some clients

might just need events

0.4.7 6/29/2016 1. Replace security token with WDM:Authenticator

2. Create specific messages for custom command request
and response

3. Add new encoding and parsing rules for profile tags

4. Add link to WDM Request Authentication [7]

0.4.8 7/11/2016 Added definition for command response to include version and
wrapper for custom-defined response information.

0.4.9 9/30/2016 Introduced non-backward-compatible change to revert both
polarity and name for tag DataElementlLastForCurrentChange
to DataElementPartialChange

Removed the change abortion feature.

0.4.10 2/14/2017 Introduced support for deleting dictionary elements.

0.4.11 3/8/2017 Change context tag value
DataElementDeletedDictionaryKeyList from 11 to 9, so it would
always appear in front of the DataElementMergeData tag in a
properly sorted message. Section 6.4 has also been modified to
allow both to present.

Nest Labs, Inc., 2016 Page 4 of 67

WDM Next Protocol Specification

2. Overview

This document describes the protocol and message format in Weave Data Management
(WDM).

The most common interactions among devices and with Nest services are through the WDM
protocol. The WDM protocol manages real-time data publication, command processing, and
eventing among network hosts.

These data are specified in predefined schemas as traits. Traits are logical groupings of state,

events, and commands for specific aspects of an application plane.

2.1. Related documents

These additional documents must be read for a full view of the protocol that is used in current
Nest products:

1) [Trait Design Guidelines] (x-ref) for this generation of Nest products (TBD but must
contain critical information/constraints for interoperation with the products)
2) [Weave Interface Define Language] (x-ref) (TBD)

2.2. Diagram legends

Many diagrams in this document, especially sequence diagrams, use the legends defined in
[UML 2.0](http://www.omg.org/spec/UML/2.0/). The most commonly used legends are described
below.

- Runtime component

n A sends synchronous message to B, expecting a
response

ﬂ B sends synchronous response message to A
ﬂ A sends asynchronous message to B

Figure 1. Legends used in many diagrams

Nest Labs, Inc., 2016 Page 5 of 67

WDM Next Protocol Specification

2.3. Weave type-length-value (TLV) tuples

Path type: <>

Structure type: {}

Dictionary type: { }

Array type: [] Note that all elements contained by an array must have AnonymousTag.
Tag = Description of value. Should begin with either “Optional” or “Mandatory”

Key

I* comments */

3. Architecture overview and typical deployment

Update

Subscribe

Xin]!

Custom WDM Command

Figure 2. Basic components in the WDM protocol

WDM is a state synchronization protocol that is optimized to efficiently align a set of clients with
the publisher.

A publisher has a number of data sets called trait instances that can be changed by internal and
external causes. The publisher is responsible for keeping the data secure, responding to various
requests, and sending notifications to clients when data is changed.

Clients can issue “view” commands to see the latest/current version of any data, “update”
commands to change some of the data, “subscribe” commands to maintain long-term data
streams and get notified about changes, or a custom WDM command using all the flexibility that
Weave provides.

Precisely preserving every change is not a major goal of WDM; hence, changes are allowed to
be collapsed together. Redundant data could be sent to save memory space on the publisher.
On the other hand, the protocol emphasizes the eventual consistency on data among clients
subscribing to the same publisher, and the efficiency for both over-the-wire data size and
on-device memory space.

Nest Labs, Inc., 2016 Page 6 of 67

WDM Next Protocol Specification

3.1. Resources, trait profiles, and trait instances

A resource is a grouping of trait instances and interfaces that represent a logical or physical
entity, such as a device, structure, or user. The resource fully describes the capabilities and
behaviors of the entity it represents. The same resource definition can be implemented by a
Weave device, or by a logical entity in the sense of cloud services. The resource ID can be the
Weave node ID for a device or the structure ID for the cloud service.

If not specified, the resource ID is the Weave node ID of the route target Weave node.

A trait is like a class definition in object-oriented programming languages, while a trait instance
is like an object instance of the class. There can be multiple instances of the same ftrait, like
multiple temperature sensors of the same type, on a resource.

3.2. Versions

For each trait instance, there is an associated version observable to its clients. To a client, the
version number can be compared for order, as with unsigned integers, but the internal format or
meaning in the difference between version numbers is opaque. This loose definition enables a
publisher to use timestamps and other mechanisms for version numbers.

There is a hard requirement for the WDM publisher to be able to maintain the total order among
all version numbers it has generated for a trait instance, even across system reboots. This is
needed to guarantee correctness of data synchronization.

3.3. Weave TLV and WDM adoption

Weave TLV [4] is used in many places within WDM. Most message payloads, including change
records sent over the wire, are encoded in this format. The data hosted on publishers is also
modeled using this format. This means that although the data itself may or may not be stored in
a specific encoding, all the operations have to be expressible with the WDM adoption of Weave
TLV. Weave TLV is flexible in what can be contained and in what order, but WDM provides
some guidelines and rules.

These rules apply to both message payloads and the data hosted on publishers:

1. Orderin a TLV container is relevant. Unless otherwise described, all elements must
appear in a fixed order as specified in this specification.

2. Unless explicitly marked as extensible in the documentation, an unrecognized tag or
incompatible data type in message payloads is considered a protocol error. This implies
we do not intend to extend the protocol by just adding new tags into existing message
payloads.

Nest Labs, Inc., 2016 Page 7 of 67

WDM Next Protocol Specification

There are further modeling restrictions for data hosted on publishers, which can be found in
later sections and in [Trait Design Guidelines] (x-ref).

3.4. Transport and exchange context
WDM supports TCP and the Weave Reliable Messaging (WRM) protocol.

When TCP is used, all messages in the same connection are inherently serialized.

When WRM is used, the next message in the same exchange context cannot be sent until
acknowledgement for the previous message is received.

A notification request can only be sent out after a publisher has received a response for the
previous notification request from the client. Normally each notification request initiates its own
exchange context, but in the subscribe response scenario, all notification requests are in the
same exchange context as the subscribe request and subscribe response.

In all cases, the WDM protocol has an explicit response message for each request.

3.5. Security

The WDM protocol relies on Weave security for secrecy as well as authenticity and integrity
checks. Additional layers of security can be added to further verify end-to-end security if part of
the network topology doesn’t communicate with Weave. More detail can be found in [7].

- Important information in a request message from a client is signed with a known key. At most,
one authenticator is supplied with each request message to be verified at the publisher's side.
The accepted authenticators are TBD. TLV tag, data type, and schema used by an
authenticator is defined by its associated profile.

The authenticator could be one of these: [TBD]

Whether messages from a publisher, like responses and notifications, should be signed as well
is currently being defined. This mechanism doesn’t add secrecy on top of Weave security.

4. Model for data hosted on publishers

WDM models the data hosted on a publisher as a Weave TLV tree. The root of the tree must be
an anonymous TLV Structure. The use of TLV Array in this data model is discouraged, for there
is no way to convey partial data change in the current version of WDM, leading to much less
efficient encoding when only part of the array is changed.

Nest Labs, Inc., 2016 Page 8 of 67

WDM Next Protocol Specification

4.1. Paths

Path is a special TLV element that is used to point to a specific node in the hosted data. The
detailed format and examples can be found in section 6, Message Format. The main limitation
for paths in the current WDM implementation is that a path cannot point into any individual
element in a TLV array. This limitation enforces the entire array to be treated as a single leaf
value in change records sent over the wire.

Path to the root:

Trait Instance D

o Profie 1 - x=a2
Trait Profile 1D

X=42
Y=23
Resource ID =

Trait Profile 1D

Trait Instance 1D
/P/A

Figure 3. Paths pointing to different subtrees of TLV data

4.2. Dictionary

The dictionary is a WDM-specific concept built on top of the TLV structure container. A plain
structure can only have a fixed schema, while a dictionary can have a variable number of
elements of some fixed schema. All elements in a dictionary must carry tags under the
Dictionary Key profile.

Since there is no marker in Weave TLV to differentiate the tags, a recipient must know the
schema of the TLV tree to determine whether a structure is plain or a dictionary.

The root TLV structure cannot be a dictionary because we cannot express deletion of any
element from the root. This is discussed in more detail later.

There might be some limitations on the tags of elements contained by a dictionary in certain
implementations.

Nest Labs, Inc., 2016 Page 9 of 67

WDM Next Protocol Specification

Operations on dictionaries are explored below in section 5.2. Data change model.

AnonymousTag = Structure

P = Dictionary

= Structure

A=23
Elements in a dictionary
have exactly the same 0=77
schema, but distinct tags

Dictkey_77 = Structure

It's fine to have multiple

dictionaries, but nesting them

might not be supported by some -
implementations X = Dictionary

Figure 4. Limitations on dictionaries

5. Supported dialogues

5.1. Overview

A detailed message definition can be found in in Section 6, Message Format.

Table 1: Supported dialogues

Dialogue Use

Subscription Relatively long-term relationship in which a client is notified when requested
data has been changed.

View Retrieve the latest version of requested data without the burden of

Nest Labs, Inc., 2016 Page 10 of 67

WDM Next Protocol Specification

maintaining a subscription.

Update Request to modify some data with the option of expiry time and additional
context/arguments.

Custom WDM | Request to perform some operation that might have observable WDM
Commands effects, with the option of expiry time, additional context/arguments, and a
result.

5.2. Data change model

WDM uses several strategies to describe changes to data. The strategies described in this
subsection are equally applicable to WDM Notify messages and WDM Update messages. We
begin by noting that the path mechanism, along with the structured values, provides multiple
ways to address the same information. For example, Figure 5 below, captures two possible
encodings of setting the element /p.A = 57.

!
_ P ={ /*replace content of B ¥/
4 =57
}

/B
l
A = 57 *merga */

A=42 . 57

Both Changes are valid to achieve data syne for /B,

Figure 5: Multiple representations of a change for the same data item

In the first example, the path being changed is /, and the value being set is the complete value
of structure P. In the second example, the path being modified is /P and the value being set is
the integer 2. WDM exploits the two different encodings to provide additional flexibility and to
minimize the changes transmitted by the protocol.

WDM uses the following terms in dealing with the change operations:

e ‘“replace” refers to replacing the existing data on a client’s replica with data provided in
the change set.

e “merge” refers to replacing data with the same tag with new value.

Nest Labs, Inc., 2016 Page 11 of 67

WDM Next Protocol Specification

As suggested in Figure 5, the first operation is a replace, and the second operation is a merge.

WDM provides the semantics called “one-level-merge”: it applies the merge strategy at the first
level pointed by the path in a WDM data element. Lower levels are always replaced. Figure 6
below explores the equivalent changes in a more complex structure. Note that in the replace
strategy, the change contains not only the changed leaf values, but also the unchanged element

(1).

_P={ /*replace content of P %/

0=22
} ¥=23
e

A =57 *merge */
0 =22 /*merge*/ 23 — 22

b

\3

L,

Both Changes are valid to achieve data sync for /B.

Mote that we cannot change the schema of a Structure, =0 all tags have 10 be present in the
replace case, and no new tags in any case

Figure 6: Multiple equivalent representations for a more complex change

This mechanism uses the depth in tree transversal to determine the scheme used, so a client
might receive one level higher than what it has subscribed for. This strategy is useful in
describing changes that cannot be described using the merge strategy, for example, in
situations where the portions of the element subscribed to (or the element in its entirety) are
deleted.

5.2.1. Changes in dictionaries

The overarching WDM strategy of one-level-replace applies to both the dictionaries and
dictionary entries. When the path in the changeset points to the parent of the dictionary, and
the changelist contains the tag of the dictionary, the contents of the dictionary are replaced with
the value provided (see Figure 8). When the path points to the dictionary itself, the merge
strategy is applied to the dictionary elements: items with new key tags are added into the
dictionary and items with existing key tags are replaced with new values. (see Figure 7 below).

Nest Labs, Inc., 2016 Page 12 of 67

WDM Next Protocol Specification

/’,47

D ={ /* replace content of D */

DictKey 22 = 57
DictKey 83 = 23

I —_—

DictKey 22 = 57 /* merge */
DictKey_83 = 23 /* merge (insert) */

Both Changes are valid to achieve data sync for /P,

AnonymousTag = Structure

DictKey_22 =

Mote that we can change the schema of a Dictionary, so existing tags are merged, new tags
are inserted, and missing tags are removed in the replace case.

Figure 7: Change the content of a dictionary

Structure

—

D ={ /*replace content of D */

DictKey 83 =23

/ AnonymousTag =

/ I
[

X =42

I
o

Y =

—

The entire dictionary may be replaced using the standard WDM
replace policy. This approach may be used to specify item removal

from some dictionaries.

Figure 8: Replacing an entire dictionary.

Nest Labs, Inc., 2016

Page 13 of 67

WDM Next Protocol Specification

By their nature, dictionaries store variable collections of data, and the number of items in the
dictionary is unspecified in schema. In some cases, the number of elements in the dictionary
can be large. Removing an element from a large dictionary would be costly without specialized
support: removal of an element cannot be expressed using a merge strategy, and the replace
strategy would dictate that the changeset contains all the items remaining in the dictionary. To
support the compact dictionary item removal, WDM changeset contains specialized support:
instead of the merge list, the changeset for a dictionary path may contain a list of keys to be
removed. Figure 9 below shows that operation.

AnonymousTag = Structure

/D
RemoveKeys = [DictKey 22]

D = Dictionary
[bwszeo
— e

Dictkey_83 = 23

Dictionary item removal. The path must point to a dictionary item.
The regular changelist is omitted and instead, a list specifying keys
to remove is provided

Figure 9: Dictionary item removal

5.2.2. Changes in arrays

As has been noted, TLV arrays are treated as a leaf elements. Any changes in any element,
such as the addition and deletion of elements, results in replacing the entire array. There is no
merge operation defined for arrays. Figure 9 below demonstrates that operation.

Nest Labs, Inc., 2016 Page 14 of 67

WDM Next Protocol Specification

/ A=42
A ={ /*replace content of A */
23 Y=23
}
T
=

The only way to modify anything contained in an array is to send over the whole array to
replace it.

MNote that elements in a TLV Array cannot have tags

Figure 9: Modify content of an array

5.2.3. Changes in the root path

There is no way to delete elements directly contained by the root container: at the top level only
merge operation is permitted and the root element has no parent.

5.3. Subscription

Table 2: Messages related to WDM subscriptions

Message Use

Subscribe Request Sets up a subscription.

Subscribe Response Confirms subscription setup is complete.

Notification Request Sends change records to a client.

Notification Response Confirms the change record is accepted.

Subscribe Cancel Request Tears down the subscription.

Subscribe Cancel Response Confirms subscription is torn down.

Subscribe Confirm Request Indicates subscription is still alive and asks for
confirmation from the peer.

Nest Labs, Inc., 2016 Page 15 of 67

WDM Next Protocol Specification

Subscribe Confirm Response | Confirms subscription is still alive.

5.3.1. One way subscription

Subscribe
Request

e —

Waiting
Verify paths and versions
(0 or more) Notification Request exchange
context
Process incoming data -
using the subscription ID -
coming in the same - ==~—.____Notification Response
exchangecontext T T Tmm-— -——
Subscribe Response
Indicate that subscription < - = —
has been fully set up. No I
. . change
data comes in Subscribe g
Response Notification -
4___ .
exchange
context
Legends: UML 2.0 __ _ Notification Response
T el -

Figure 10: Message flow for one way subscription

A client sends a subscribe request to a publisher with a list of paths the client is interested in
and a list of versions the client already has for each path. The publisher either returns a status
report on error or starts sending notification requests with data and versions in them followed by
a subscribe response.

The notification requests before the subscribe response should bring the client to a reasonably
aligned state, which means the publisher believes the client has all current versions.

All notification requests and the final subscribe response contain a subscription ID, which is a
number specific to the publisher. The generation mechanism should be designed so the
chances for subscriptions on the same publisher having the same ID is very low, even across

Nest Labs, Inc., 2016 Page 16 of 67

WDM Next Protocol Specification

system reboots. 64-bit random numbers generated by a secure random number generator are
recommended.

All notification requests carry one or more changes, either complete or partial. Changes could
be a superset of what has actually been changed, but must be constrained by the paths listed in
the original subscribe request.

Once the subscribe request is received, the publisher can start sending notification requests
containing the change that needs to be applied to the existing copy of the trait instance data the
client already has to maintain consistency.

After the subscribe response is sent or received, the subscription is considered alive and can be
torn down through the subscribe cancel request from any party. If something goes wrong on the
publisher's side before the subscribe response is sent or received, a Status Report can be sent
in response to the original subscribe request.

Subscribe request

Waiting
Verify paths and versions
Notification request __ Weave
Process incoming data Exchange
using the subscription ID
coming in the same Weave ----_ - Notification response
Exchangee. | 7T TTm=eol -
Something went
wrong and
_ _S_t?tfl ‘,5_ ﬁelpf} A publisher decided
Client was informed by this ™~~~ to abandon this
Status Report that the subscription befare
subscription didn't go alive aresponse was
sent

Legends: UML 2.0

Figure 11: Publisher aborts subscription setup after sending notification requests

Nest Labs, Inc., 2016 Page 17 of 67

WDM Next Protocol Specification

Subscribe request

_\—*ﬁ—-—.

Waiting
Verify paths and versions
Notification request Weave
Process incoming data - Exchange
using the subscription ID -
coming in the same Weave ~----_ - Notification response
Exchange. | TTTTmemeaol -
Subscribe response. _ _ -
espal
Communication E':;bhsgte L:_Eif i{; rthe
Client was has to abandon error resy
: o ponse has gone
this subscription after throuah. and ma
timeout (TBD) 19, y
receive a second

Subscribe request attempt from the

Legends: UML 2.0 :
same client

Figure 12: Client recovers from communication error during subscription setup

The time a client has to wait before abandoning a subscription is TBD. It means that any kind of
error, including communication difficulties in the early stage of subscription setup, could cause
longer delays. For example, a notification request could fail to arrive causing the publisher to
abandon the subscription. The client would have to wait before trying again.

The publisher may or may not know if a subscribe response goes through successfully,
especially if the link is TCP. The publisher may actually see another attempt from the same
client when the previous one is still considered alive. This scenario is discussed in the liveness
section.

5.3.2. Canceling subscriptions

The following diagram describes the process flow for cancelling a description.

Nest Labs, Inc., 2016 Page 18 of 67

WDM Next Protocol Specification

o

Subscribe response Weave
I] Exchange
Subscription considered =

alive only after the
Subscribe Response is

received. Subscribe Cancel request

Only after that, a Subscribe

Cancel request can be sent Weave

to tear down the Exchange

subscription. Subscribe Cancel L
response SUDEFFIIJTIUH is not

A subscription is not alive considered alive

anymore after the Subscribe anymore after the

Cancel request is sent, but Subscribe Cancel

completely abandon after request is received.

the Subscribe Cancel
Response is received

Legends: UML 2.0

Figure 13: The process flow for cancelling a subscription

5.3.3. Notifications and changes

Notification requests are sent only after a subscribe request is received, but could be sent both
before and after a Subscribe response is sent. Once a Subscribe Cancel request is sent or
received, a publisher should not send more notification requests carrying the subscription ID.

The notifications sent before a Subscribe response are sent in the same Weave exchange as
both the subscribe request is received and the subscribe response is sent. Each notification
sent after the Subscribe response must have a new Weave exchange.

Every notification request carries one or more changes that contain information that is applied
on top of the existing version for this particular trait instance on the receiver end to be one step
closer to alignment. Every change describes anything from the exact changes from one specific
version to another as well as all the data of the specific version, all pruned by the path list of the
original subscribe request. Note that we have an exception case to communicate version
changes without observable data alternation to a certain client, which will be described later in
this section.

Nest Labs, Inc., 2016 Page 19 of 67

WDM Next Protocol Specification

S;‘i 29& Data Element, Version: 4, Partial: N
Notification

request 0

Change
V4 to V5

Data Element, Version: 5, Partial: N
Matification

Data Element, Version: 5, Partial: Y

request 1 Data Element, Version: 6, Partial: Y
Change

any to Ve
EUELE)] Data Element, Version: &, Partial: Y
Notification

request 2
eq Data Element, Version: &, Partial: N

Figure 14. Changes consist of data elements that can be distributed among notifications

The change might describe data that is more than what has been actually changed on the
publisher since the previous version, and could be more than what has been changed since the
existing version on the client side. The change must be pruned by the path list in the subscribe
request. A change has all the data if it describes everything a client cares about for that
particular version no matter what prior information the client might possess. A change with all
the data for one client might not be a change to another client, since every client could be
interested in different parts of the same trait instance. A change with all the data must contain
everything a client needs to replace the entire trait instance no matter how many paths the client
has subscribed to for the specific trait instance.

Changes are only logical and do not have a physical presence in the message payload or
protocol significance. The beginning of a change for a specific trait instance is implied by a data
element carrying a new version for the trait instance. The ending of a change is indicated by a
data element with the DataElementPartialChange flag set to false.

For a client, an incomplete change indicates what it already received and does not yet provide a
coherent view of a version of the trait instance. If a publisher runs out of buffer space in a
multi-notify sequence and must interrupt current change, it can choose to cancel or abort the
current subscription instead. The client would eventually re-subscribe and receive the most
up-to-date view of the traits then.

To simplify the implementation, a publisher must send all data elements in the same change
before another change can begin. The next change can describe any trait instance, but data
elements of different changes must not mix. Changes for the same trait instance must be sent in
version-ascending order, which means a client can apply the changes in the same order as they
are received.

Nest Labs, Inc., 2016 Page 20 of 67

WDM Next Protocol Specification

AnonymousTag = Structure

Path in original
Subscribe
Request
Although only A has been changed, A=42 57

2
3
the whole P could be sent in e
Notification requests.
0=23

Figure 15: More than exact changes can be sent over in notifications

Sometimes, the data change is in a trait instance is outside of subscription of a client. To that
particular client, it only senses version of the whole trait instance has changed, but not data
alternation. Occasionally the publisher simply wants to bump the version but not change any
data for some administrative reasons. To communicate this situation, a publisher can send a
single data element, which has the path pointing to the root of this trait instance, and the data is
an empty TLV structure. A client should be able to pick up the version change no matter which
part it actually subscribes to.

5.3.4. Version list in subscribe requests and changes

The elements in the version list of the Subscribe request are versions that a client has
immediately before the subscription setup. A client can choose to send NULL indicating it
doesn’t have any prior versions. The publisher would then send changes to completely cover
the path lists in the subscription request.

Table 3: Meaning of different value for version in subscribe requests

Matching element in Publisher behavior

version list

NULL The publisher must send the current version as a whole.
Version V 1) If the current version is still V — no change is sent.

Nest Labs, Inc., 2016 Page 21 of 67

WDM Next Protocol Specification

2)
replace V
3)

If the current version is VX >V — send complete VX to

If the current version is VY <V, which means V must be
invalid, this subscription request is invalid.

0 Version 0 is currently reserved and must not be used in any trait
instance. The minimal version can only be 1.

A client in live subscription
always has coherent view o
a trait instance upon
applying a complete Change

f"u""ll]

Client reboots and forgets
everything

The publisher must sends just the
latest version with all the data.

—-—

—

-—

Legends: UML 2.0

Change: V13 with all the data

Change: V7 to "ﬂ_ﬂ -

Subscribe request: NULL

Subscribe response

Figure 16: Client requests only the latest version

Change:V13to V14

|

V10
V11

V12

V13

—

. V14

Nest Labs, Inc., 2016

Page 22 of 67

WDM Next Protocol Specification

| Change: V7 to V10 V10
A client in live subscription always has o S
coherent view of a trait instance upon V10 —
applying a complete change

Lass of communication

The publisher sends nothing before Subscribe | Subscribe request; W10
Response. This implies nothing has changed since r _
the last version,

Subscribe rezponse

V1o) , _ -

Legends: UML 2.0

Figure 17: Nothing changed on the publisher’s side

5.3.5. Liveness and liveness check

Liveness for a subscription is important for a client since a client might rely on incoming
notifications to alert itself about a change that just happened. Imagine a security console relying
on notifications from a window sensor to alert it that a window is being opened. If a
communication outage prevents the window sensor from sending out the notification, the
security console could miss the critical event that some window has been opened. A client
needs to confirm the liveness of the connection from time to time subject to the needs of
application.

Once a subscription is determined to be dead, a client usually should try to re-establish a new
one. A publisher should choose to serve the latest subscription from the same client if it cannot
serve more subscriptions. It's not necessary to explicitly send a subscribe cancel request to the
subscription that is being abandoned.

Nest Labs, Inc., 2016 Page 23 of 67

WDM Next Protocol Specification

m

Subscribe request

Subscribe

response - -
g = T sponse_ . Subscription 19

Subscription 19

Client usually learns

about the loss of

subscription through Communication
timeout on Subscribe error

Confirm response, or

missing Publisher

Status, after some . o
time of inactivity. Subscribe request Subscription 7

Subscribe

response _ e -
PR sponse_ _ . Subscription 7

Legends: UML 2.0

Figure 18: Client tries to recover via a new subscription

Liveness can be confirmed by various methods. Successful exchange of any message
containing the correct subscription ID can be used to prove the subscription is still alive on both
ends. The most common method is notification requests of a trait instance, which are
exchanged when data changes. A Subscribe Confirm request can also be inserted by a client in
the absence of data changes. Note that there is no direct support for liveness validation from a
publisher.

Nest Labs, Inc., 2016 Page 24 of 67

WDM Next Protocol Specification

Subscribe Confirm

Subscription ID

Status Report + WRM ACK

Legends: UML 2.0 WRM ACK

Figure 19: Message flow for Subscribe Confirm

Subscribe request

Timeout Min,
Timeout Max
Subscribe response @

Figure 20: Timeout negotiation during subscription setup

Legends: UML 2.0

If the publisher requires some upper bound on time between liveness validations, it can express
this in a Subscribe response with a timeout. The client would then be responsible for sending a
Subscribe Confirm request whenever the inactivity lasts longer than that threshold. During the
subscription setup, the client can optionally send the range of time periods it can support by
sending Subscribe Confirm requests, given its power and network budget, so the publisher can
make a more reasonable choice on the timeout.

Nest Labs, Inc., 2016 Page 25 of 67

WDM Next Protocol Specification

o

Motification request

Motification request

Inactivity longer than
the agreed upon

timeout Subscribe Confirm request

Inactivity longer than
the agreed upon

timeout Subscribe Confirm request

Legends: UML 2.0

Figure 21: Inserting subscribe confirm request during periods of inactivity

5.3.6. Mutual subscription and bounded liveness

Mutual subscription happens between a pair of entities subscribing to each other sharing the
same subscription ID and liveness. This is usually used between a device and the Cloud
service.

Since both entities are publishers and clients at the same time, we use “initiator” to indicate the
party that initiates the first Subscribe request, and “responder” to indicate party that sends the
second Subscribe request. By convention, a device initiates the subscription toward the Cloud
service. The detailed parameters, especially the timeout specs, can be found in section 6,
Message Format.

Nest Labs, Inc., 2016 Page 26 of 67

WDM Next Protocol Specification

Devices usually take

= Subscribe Request 1
the role of an Initiator q

Same Weave Exchange,
as they belong to the

same conversation Subscribe Response 1

Generate unique
subscription |D

Responder should wait for ACK
for the response, if WRM is used

Send the same subscription 1D
to express the wish to bundle the
liveness together, no change to
timeout is allowed

Recognize the same Subscribe Request 2

subscription 1D to bundle the Same Weave

liveness together, and then . Exchange, as

put the same into response Subscribe Response 2 they belg.]ang to
the same

Legends: UML 2.0 conversation

Figure 22: Message flow for mutual subscription

A liveness check can be initiated on both sides for either subscription. Since they share the
same subscription ID, the liveness of one subscription proves the liveness of the other. Note
that the subscription ID has to be unique on both ends, which is a stronger requirement than in
one-way subscriptions. An initiator can cancel the subscription when it sees a conflicting
subscription ID on its side and re-initiate a new subscription.

A liveness check time limit negotiation is done the same way as a subscription, only it is allowed
to happen in the first subscription. The second subscription must not change the timeout
threshold. More specifically, SubscribeTimeOutMin and SubscribeTimeOutMax in
Subscribe Request 2 are ignored by Initiator. SubscribeTimeOut can be absent in Subscribe
Response 2 and the timeout shall still be the same for both subscriptions. If Response actually
specifies SubscribeTimeOut in Subscribe Response 2, the value must be the same as in
Subscribe Response 1.

The initiator is responsible for inserting subscribe confirm requests when there is no other
activities on any direction for long time. The responder would cancel subscriptions on timeout
after inactivity. The initiator would also cancel its subscriptions if the subscribe confirm request
fails.

Nest Labs, Inc., 2016 Page 27 of 67

WDM Next Protocol Specification

5.4. Views

A view can be seen as an instant subscription, which gives a one-time result identical to the
view response. A client would specify the paths it is interested in. No current version is provided
in the request, so a publisher must always populate the response with the latest version for all
paths requested.

Since view response doesn’'t assume a merge is possible, the data elements in the view
response must not be applied using the “one level merge” scheme but rather the “replace”
scheme.

AnonymousTag = Structure

D = Dictionary

Dictkey 22 =42 — 57

/D /* replace everything */ .
{ (New) DictKey 83 =23

Dictkey 22 = 57
DictK. =23

Data Elements in View responses are meant to replace everything
on the client side, without merging.

Figure 23: Replace scheme used in a view response

Nest Labs, Inc., 2016 Page 28 of 67

WDM Next Protocol Specification

5.5. Update

WDM:Update

Shared by all Data Elements
Expiry time
Custom arguments

Security token

Data List

Data Element = {Path, Version, Data}

Data Element = {Path, Version, Data}

Figure 24: Payload of update request

An update request is sent from a client to a publisher. One or more data elements in the request
are the unit for processing at the publisher. Data elements intended for the same trait instance
are guaranteed to be applied in a serial manner, but the order is undefined. There is no
guarantee for data elements intended for different trait instances.

Aside from the actual data, some parameters can also be provided as context. Parameters
including security token, expiry time, and custom arguments are shared among all data
elements, while the version is unique for each data element. Details for these parameters are
discussed in later sections. The application of data elements follows the “one level merge”
scheme described for notification requests. A publisher may choose to increase the version of a
certain trait instance after any number of data elements have been applied to it, as long as no
client gets an incoherent view of it.

Clients must expect the target trait instances to be in some partially updated status when an
update request is rejected. This is because data elements are processed individually, and the

Nest Labs, Inc., 2016 Page 29 of 67

WDM Next Protocol Specification

publisher may or may not be able to perform a rollback when an error is detected while
processing a data element that is sent later.

5.5.1. Version for optimistic locking

Including a version in a data element specifies the change is only applicable if the current
version of the target trait instance is as specified. If not, this request will be rejected. This can be
used to avoid modification or action on the trait instance over an unknown state.

Assume there is a command to bump a traffic light to the next state instead of setting the state
to a specific state. If there is another client also trying to bump the state, the result could be that
the state is bumped twice.

5.5.2. Expiry time

Due to delays at various layers, it's difficult to predict exactly when a publisher would begin
processing a command. As an example, an “open the door” command could reach the publisher
20 minutes after it was sent, in which case the door would be opened long after the user has
given up and left. For most commands that have a Ul element, a time period of several seconds
is probably the longest time interval we should allow before the command is considered invalid.

Expiry time

specifies this part Request is completed at

the publisher

! | . timeline

Request is sent Request is received
and about to be
verified for expiry
time on the publisher

Figure 25: Expiry time

For expiry time, there are a group of error codes that indicate the reason and network location
(proxy or destination publisher) when a timeout occurs. This information is described in later
chapters.

5.5.3. Custom arguments

Custom arguments are outside of the scope of this document since the use and schema of this
information is application specific. The WDM profile only specifies that these arguments are

Nest Labs, Inc., 2016 Page 30 of 67

WDM Next Protocol Specification

optional in the payload of an update request under a specific tag. The information is treated as
shared context while processing all data elements.

Since custom arguments are shared by all data elements in an update, which might point to
different trait instances, it makes more sense for custom arguments in an update to carry profile
tags instead of context-specific tags, or even be anonymous. This is designed to allow handlers
for all affected trait instances to be able to tell what the arguments mean. On the other hand,
arguments for a specific custom WDM command would be interpreted by one specific profile
implementation, and hence can be interpreted with less ambiguity.

5.5.4. WDM subscription

Update requests usually generate new versions for one or more trait instances. For example, a
“change current track to #8” request could result in a change in the device status as “current
track is #8”. With a WDM subscription, the client could potentially observe the change and
update its Ul.

WDM is not designed to deliver edges of changes reliably, which means state change events
could be merged with each other and become undetectable. As an example, if a door is closed
again soon after the “change door to open” command finishes, an observer could potentially
lose the transition from close to open.

There is a version number carried in the response for each data element that indicates the last
version a client needs to wait for regarding any direct change in that trait instance. After
receiving that version, whether an edge is detected or not, a client might want to cancel the
subscription to save resources.

5.4.5. In progress message

For long running update operations, a publisher can choose to send an “In progress” message

in the same Weave exchange, indicating it’s still working on the update. There can be only one
of these messages in the Weave exchange. Whether the message used and when to send it is
specific to each application. An example can be found in the next section.

5.5.6. Message flow overview

The figures below depict the flow of messages in two typical cases: a short-running case and a
long-running case. The client is also usually a subscriber to the target trait instance, so
notifications will be sent back to it if the request causes property changes in the target trait
instance.

The version delivered in notifications may or may not be the same as the version carried in the
response. The version in notifications indicates the latest version, while the version in responses
indicates the last version the client needs to wait for. In the case of V2 > V2', the client might

Nest Labs, Inc., 2016 Page 31 of 67

WDM Next Protocol Specification

need to wait longer for the effects to be delivered. In the case of V2 < V2’, the observable
changes to this particular trait instance probably have already been collapsed with other

changes.

A publisher must not send the update response before the notification responses for all the
directly modified traits have been received from the requesting client.

A command might have side effects on other trait instances, but the versions are not
communicated in the response. This means a client would have no direct indicator of when to
stop monitoring notifications or cancel the subscription other than a timeout.

Client

|

Request

‘_________-_-_______'_‘—-—-h-

Ack

e

Probably a new version

Motification Request

(Notification Response, Ack)

Ack

Response _ _ _ -+

= i Ack

;\).

v

Figure 26: Message flow for update

Request, In-Progress, Response,
and all associated WRM ACKs
are in the same Exchange
Context

-

Motifications are sent through a
different Weave Exchange. The
relative order of messages is
naturally independent from
message sequence in other
Exchanges.

A publisher is required to
send the response only after
it receives the Notification
response from a client. This
is to increase the chance the
client sees the Motification
request before the Update
response.

Legends: UML 2.0

Nest Labs, Inc., 2016

Page 32 of 67

WDM Next Protocol Specification

4 Request A\

-_____-_______-_____'_“‘—"" Request, In-Progress, Response,

{In-Frog ress Ack} __L_ and all associated WRM ACKs

! are in the same Exchange
Context
Ack
\ —~ /

Probably a new version Matifications are sent through a
different Weave Exchange. The

Motification Request relative order of messages is

naturally independent from
message sequence in other
Exchanges.

(Motification Response, Ack)
A publisher is required to
Ack send the response only after
it receives the Notification
response from a client. This

Response o4 4 is_to increase the c_h_anc:g the
=== T client sees the Notification
-+ = - Ack — request before the Update

\—_\» response.

Legends: UML 2.0

Figure 27: Message flow for update with an In Progress message

5.5.7. Door lock as an update request

The request to update some data could be seen as a command to perform some sort of
operation as well. Successfully updating data means the operation has been performed without
issues.

The assumption is the command has two directly observable results: the response indicating the
result of command execution, and the notifications indicating the state of the deadbolt right after
the command is executed.

Following the design principle, the notification should come from the same trait instance, which
means the trait implementing the ‘door lock’ command should also publish the ‘state of the dead
bolt’.

Nest Labs, Inc., 2016 Page 33 of 67

WDM Next Protocol Specification

Door Lock
- D
time T

Waiting Queued, and then trying
to move the deadbolt

O

Motification
Request

V2 (or later) arrived. >

Door Lock
@E7E» Response

Door lock command response arrived """f

Figure 28: Update response comes after notification

It's possible that the notification of the same or later version actually arrives later than the
response. The client can choose to wait for the notification if necessary.

Nest Labs, Inc., 2016 Page 34 of 67

WDM Next Protocol Specification

Door Lock

- D
time - T

Waiting Queued, and then trying

to move the deadbolt

Door Lock
Response

Door lock command response arrived -

Motification

p /2
V2 (or later) arrived. ~

Figure 29: Update response comes before notification

In case there is no state change associated with this command, the version carried in the
response is the ‘current’ version that the client should already be on with a live subscription.

Nest Labs, Inc., 2016 Page 35 of 67

WDM Next Protocol Specification

Waiting

Door lock command response arrived.

Since there is no state change, no
notification would be sent.

Figure 30: Update response indicates failure

Table 4: Scenarios for update responses

Door Lock
Request

T

Queued, and then trying
to move the deadbolt

Door Lock
Response

Command succeeded

Command failed

No version is carried | Must not happen.
in the response Response could carry the current version, which is the same as before
this command took action, indicating there has been no state change

Notification with Notification probably indicates the
same or later door is locked, and response
version arrived provides extra assurance that the
before response command request was granted

and the door was locked at least
once between the command and

Notification probably indicates the
door is still not locked, and
response provides some kind of
explanation.

yet response.

version not arrived between the command and

It's probably unnecessary to wait
for this notification.

response.
Notification with Response already indicates the Response already indicates the
same or later door was locked at least once door wasn'’t locked because of this

command. Whether the door is
actually locked or not may or may
not be answered by this yet to
come notification.

Nest Labs, Inc., 2016

Page 36 of 67

WDM Next Protocol Specification

For a simple client without a subscription, the response alone would be enough to indicate the
operation has been completed.

Succeeded
Send WDM command, probably with | Update Ul indicating the
expiry time and/or version operation succeeded
Wait for response
P Failed
| Update Ul indicating the

operation failed

J

Figure 31: Flow chart for update command

For a more capable client with a subscription, the notifications could provide more of a real-time
update as the operation proceeds.

WDM can collapse edges, so the notifications received may represent the result of multiple
operations from a number of sources. As an example, say a ‘lock the door’ command could
succeed but the notification still indicates the door is unlocked. This might mean some other
client, even a human operator, tried to unlock the door right after the command took action.
Whether the client should pay attention to these contradictory pieces of information is
application-specific.

The version is only for the target trait instance for a command. There is no guarantee on the
cohesiveness with other trait instances the client might also be subscribing to.

5.6. Custom WDM commands

Custom WDM commands look similar to Update requests, but they do not carry data lists. The
purpose of a custom command is to pass a command type ID and optional arguments to a trait
instance, for some operation that may or may not lead to change in properties of that trait
instance. As the name implies, it is like a remote procedure call wrapped under WDM profile.

The assignment of command type ID in each profile and actual data schema of command
arguments and response must be further defined by each individual command. Similar to other

Nest Labs, Inc., 2016 Page 37 of 67

WDM Next Protocol Specification

Weave requests, a Status Report could be sent in reply to indicate simple failures like no
memory or access denied. A command response message must be returned if the command
executed okay.

5.7. Events

Multiple changes to a trait instance could be ‘collapsed’ and loses their individual details. For
example, multiple changes to door status could be collapsed to just the final status of either
open or close, disregard of how many status changes have happened. Other happenings on the
resource are important to note and communicate but do not result in a change of trait state.
When capturing history of the happenings on the device is important, WDM provides a
mechanism called Events to address it. The detailed rationale behind the data design of events
is captured in [5]. Here we just touch on a few key points that impact the WDM protocol.

Events can be uniquely identified through a tuple of {Source, Importance, Event ID}, and
Event IDs are guaranteed to be generated sequentially within the same resource and
importance level. The global uniqueness of the tuple {Source, Importance, Event ID}
makes it possible to implement event aggregation and deduplication. The sequential nature of
Event IDs makes it straightforward to detect loss on the subscriber side. An event can also be
marked as ‘related to’ another one, which makes grouping of events easier.

Clients can only access events through subscriptions. Transmission of the event stream often
requires multiple messages. There's no straightforward way to extend View to support event
transfer, since ViewResponses are single messages without any opportunity for chunking or
streaming of data. Consequently, at this time, accessing event stream using the View command
is not supported.

5.7.1. Event data definition

In a fully expanded form, all events have the following fields:

e UTCTimestamp - The time when event was generated in UTC milliseconds.

e SystemTimestamp - The time when event was generated in milliseconds. The origin of the
timestamp does not need to be synchronized to UTC. The field is optional; when omitted, it
defaults to the value of Timestamp

e Event source - The node ID where the event was generated.

e Event ID - The sequential, non-repeating number of the event. Event IDs are sequential per
Event Importance, start at 0, are incremented sequentially. The Event ID is persisted
across reboots; in case of an unexpected reboot it jumps forward by a sufficiently large
number to indicate a gap in the event delivery. Event IDs require similar properties to WDM
versions and Weave Message IDs, and may leverage the same libraries on embedded
devices.

Nest Labs, Inc., 2016 Page 38 of 67

WDM Next Protocol Specification

e Event Importance - Importance of the event. All implementations must support
LOG_PRODUCTION importance to provide guaranteed buffering volume to the critical
events. Implementations must support at least one additional Importance level to provide
additional data collection and debugging information. In constrained environments,
implementations may collapse non-production importance levels (LOG INFO and
LOG_DEBUG) into a single event ID sequence, such that only a single additional EventID
sequence and a single buffer are used beyond the LOG PRODUCTION requirements.

e Related Event ID - The Event ID from the same Event Source that this event is related to.
When the event is not related to any other events, Related Event ID is shall be equal to
Event ID, and may be omitted.

e Related Event Importance - Event Importance of the Related Event ID. When this event
and the related event are of the same importance, the field may be omitted.

e Event Resource - The ID of the resource that the generated event pertains to. When the
event resource is equal to the event source, it may be omitted.

e Event Trait - Trait profile ID. It is formed by concatenation of the vendor id andid
attributes from wdl.trait options

e Event Type - The type of this event; the number is equal to the wd1l .event.id optionin
the IDL definition.

e Event Data - The event data itself.

5.7.2. Event delivery in WDM

Events are delivered as a part of the WDM Notify () message, subject to the following rules:

1. Events are TLV-packed into a separate field called EventList list.

2. Events within each importance level are always transmitted from oldest to most recent.
Events within each importance level are always encoded from oldest to most recent.

3. Events of higher importance should be transmitted first, so as to minimize the chance of
overflowing the high importance queues. If all events to be transmitted fit within a single
Notify () message, implementations may choose to send interleaved event sequences
for all importance level as long as rule 2 is not violated.

4. Events may be delivered within a Notify () message that contains an empty DatalList
element.

When an event is overwritten within the history buffer and a subscription was unable to deliver
that event to the subscriber, it should not tear down the subscription. Strict requirements on the
EventID ordering guarantee that the subscriber will be able detect the gap in the event
delivery.

When the event publisher does not natively support time synchronization, it may provide the
SystemTimestamp. It then falls on the client to compute the UTC-corrected timestamp.

Nest Labs, Inc., 2016 Page 39 of 67

WDM Next Protocol Specification

5.7.3. Event forwarding

A key feature of the design is that each event has a global ID. As a result, event delivery along
multiple paths is possible, and an observer will be able to distinguish duplicate events. The
Figure below shows an example scenario of Pinna events being forwarded to Salt via Flintstone.

When a publisher forwards events from a different event source, the forwarding shall be subject
to the following rules:

The publisher must apply the event delivery logic from Event Delivery to forwarded events.
e The publisher should prioritize its own events over the forwarded events.
e The publisher must begin the sequence of forwarded events with the fully expanded
eventlD. This minimizes the subscription bookkeeping that the subscriber must keep.

5.7.4. Event loss detection

Event loss is certain, however, the design goals are to minimize the loss, provide clear
semantics around event loss and, provide mechanisms for detecting event loss along with
indications of loss volume and reasons for the loss. Event loss occurs under three primary
circumstances:

e The device generates events faster than the it can offload the events to all of its subscribers
and is forced to drop events.

e The device crashes before it has a chance to offload its event history.
An intermediate node, such as Flintstone, that is normally responsible for forwarding
events, experiences one of the above problems, for example, it crashes or it is unable to
send events fast enough.

Event loss is detected whenever the subscriber observes non-continuous EventIDs for a
specific combination of (EventSource:EventImportance). When the EventSource is the
publisher of the event sequence, the subscriber must conclude that there is an event loss.
When the EventSource is different from the publisher, the subscriber must conclude that the
publisher observed an event loss from the (EventSource:EventImportance) stream.

The event source is obligated to persist the EventIDs for each distinct Event Importance.

6. Message format

For all TLV structures described in this chapter, TLV elements with context-specific tags must
appear in “tag order”, which means an element with smaller tag value must appear before an
element with larger tag value. TLV elements with profile tags must appear after all TLV
elements with context-specific tags, but can appear in any order among themselves.

Nest Labs, Inc., 2016 Page 40 of 67

https://docs.google.com/document/d/1Vkeps-3i3PGYXUPD5mZCwQLr4sT_dlWuQY4LXr5BT9U/edit#heading=h.5ntchdwugt3r

WDM Next Protocol Specification

TLV elements with unknown context-specific tags are seen as protocol error, if appear in
payloads of any WDM message, unless they are in the custom section of Data or Event.

TLV elements with unrecognized profile tags are only allowed to appear in payloads of WDM
Update Request and Command Request messages. They are ignored if not understood by the
receiving node. This is to enable further extension of authentication and authorization
mechanisms.

Also, the Implicit Profile for encoding and decoding must be fixed at Dictionary Key profile for all
TLV elements.

6.1. Profile ID and message types

6.1.1. Profile ID

The profile identifier field of the Weave application header shall have a value of 0x0B for all
WDM messages.

6.1.2. Message type

The message type field of the Weave application header shall have one of the following set of
values for WDM frames.

Table 5: Message types

type message

0x00-0x06 WDM v1 messages (deprecated)

0x07-0x0F Reserved

0x10-0x16 WDM v2 messages (deprecated)

0x17-0x1F Reserved

0x20 View request
0x21 View response
0x22 Update request
0x23 In progress

0x24 Subscribe request

Nest Labs, Inc., 2016 Page 41 of 67

WDM Next Protocol Specification

0x25 Subscribe response

0x26 Subscribe cancel request
0x27 Subscribe confirm request
0x28 Notification request

0x29 Command request

0x2A Command response
0x2B-0OxFF | reserved

6.2. Status codes

Table 6: Status codes

Profile ID: Value | Name Comments
WDM: 0x01 Deprecated Used in WDM V2
WDM: 0x02-0x12 | Reserved

WDM: 0x13-0x18 | Deprecated Used in WDM V2
WDM: 0x19-0x1F | Reserved

WDM: 0x20 InvalidvalueInNotification | Response for notification request
WDM: 0x21 InvalidPath Response for view and subscribe
requests
WDM: 0x22 ExpiryTimeNotSupported Response for update requests and
also custom WDM commands
WDM: 0x23 NotTimeSyncedYet Response for update requests and
also custom WDM commands
WDM: 0x24 RequestExpiredInTime Response for update requests and
also custom WDM commands
WDM: 0x25 VersionMismatch Response for update requests and
also custom WDM commands
WDM: 0x26 GeneralProtocolError

Nest Labs, Inc., 2016

Page 42 of 67

WDM Next Protocol Specification

WDM: 0x27 GeneralSecurityError

WDM: 0x28 InvalidSubscriptionID Response to any request that carries
an invalid subscription ID

WDM: 0x29 GeneralSchemaViolation

6.3. Primitive TLV elements

No extra elements are allowed in any of the TLV containers described in this section. Not all

optional elements have default values.

6.3.1. Path

Path is a special TLV element, which is ordered in interpretation and can contain a duplication
of tags. The first element points to the root of the trait instance, while other elements mark the
tags to look for at each level down. Allowing the duplication of tags is necessary for it to be able
to follow multiple layers of tags that could collide with each other.

Table 7: Tags in TLV elements for paths

Name Tag Value | Description

Profile ID: Tag Value or

CS (Context Specific): Tag Value

CS: PathInstancelLocator 1 Instance locator portion of a path

CS: PathResourcelD 1 ID for the resource in instance locator
CS: PathTraitProfilelD 2 ID for the profile in instance locator
CS: PathTraitInstancelD 3 ID for the instance in instance locator

Figure 32: Listing: Path example schema

<
/*

The first element in a Path must be
the ‘root’ for this trait instance.

*/

PathInstancelocator = {

PathResourcelID = Optional,

a descriptor for where to find
We call this Instance Locator.

any value of any type.

Nest Labs, Inc., 2016

Page 43 of 67

WDM Next Protocol Specification

PathTraitProfileID = Mandatory, 32-bit unsigned integer,
Profile ID of the trait

PathTraitInstanceID = Optional, any value of any type.

/*
Property path section. Tag for each element marks the tag to look
for at this particular level, while the value must be NULL.

*/

Example lstlevel = NULL
Example 2ndlLevel = NULL
Example 3rdlLevel = NULL

>
A shorter form for the same path is shown below.

<{ResourcelID = ..., TraitInstancelD = ..., TraitProfileID = ...}, / 1stlLevel /
2ndLevel / 3rdlLevel>

6.3.2. Path list

Since a path list is an array, and every element in an array must be anonymous, you should
ignore the notation of AnonymousTag for elements in a path list.

Figure 33: Listing: Path list example schema

[
<1st Path>

<2nd Path>
<3rd Path>

6.3.3. Version list

Since a version list is an array, and every element in an array must be anonymous, you should
ignore the notation of AnonymousTag for elements in a version list.

Note that there must be some matching path list or data list to associate these versions with. If a
version is not available or not applicable for any path, the version value for that entry must be
replaced with a NULL.

Nest Labs, Inc., 2016 Page 44 of 67

WDM Next Protocol Specification

Figure 34: Listing: Version list example schema

[

AnonymousTag = Unsigned integer value or NULL to be associated
with the 1st element in the matching Path List or Data List

AnonymousTag = Unsigned integer value or NULL to be associated
with the 2nd element in the matching Path List or Data List

AnonymousTag = Unsigned integer value or NULL to be associated
with the 3rd element in the matching Path List or Data List

6.4. Data element

A data element marks a chunk of data in WDM, which contains path, version, and the actual

data.

NULL is different from absence of data in Weave TLV. NULL must not be used in a value
pointed by WDMDataElementMergeData to indicate absence of data at any path and version.

If the intention is to express deletion of some element, the upper container, dictionary or array

must be replaced.

Table 8: Tags in TLV elements for data elements

Name Tag Value | Description

Profile ID: Tag Value or

CS (Context Specific): Tag Value

CS: DataElementPath 1 Path for this data element

CS: DataElementVersion 2 Version for the trait instance
described in this data element

CS: DataElementPartialChange 3 True if there are more data
elements is in the current Change.

4-8 Reserved

Cs: 9 Optional, contains a list of keys to

DataElementDeletedDictionaryKeyList be deleted from the dictionary

CS: DataElementMergeData 10 Optional

Nest Labs, Inc., 2016

Page 45 of 67

WDM Next Protocol Specification

Figure 35: Listing: data element schema

{
DataFlementPath = Mandatory, a path

DataElementVersion = Optional, integer value. Version of the trait instance referred in the
path

DataElementPartialChange = Optional, boolean value, default to false. Set to true in all
but the last data element for the current change. This is used to mark the end of a change so
data elements can be applied as a whole across Weave messages, mostly useful in notification
requests. If there is only one data element in some change, this element can either be set to
false explicitly or skipped.

DataElementMergeData = Optional, any value of any type. May only be absent if
DataElementDeletedDictionaryKeyList is specified.

DataFElementDeletedDictionaryKeyList = Optional. May only be present when the
DataElementPath refers to a dictionary. When present, the elementis a TLV array
containing a set of dictionary keys to be deleted from the element pointed to by the
DataElementPath. Note: the overall element is an array, so each entry is encoded as an
anonymous tag. The value is an unsigned integer. Note: When both
DataFElementMergeData and_DataElementDeletedDictionaryKeyList are present
in the same DataElement structure, the deletion operation takes precedence.

}

6.4.1. Data list

Since a data list is an array, and every element in an array must be anonymous, you should
ignore the notation of AnonymousTag for elements in a data list.

Figure 37: Listing: data list example

[
{lst data element}

{2nd data element}
{3rd data element}

6.4.2. Events

To accommodate future extension in events, unknown TLV tags must be allowed.

Nest Labs, Inc., 2016 Page 46 of 67

WDM Next Protocol Specification

Note: This section reproduces event fields and tags from the authoritative reference defined in
[5] for completeness and copied to Table 9. The section is authoritative for WDM-specific
extensions to the event data model, such as EventDeltaSystemTime, that provide additional
compression applicable to the event stream presented in Table 9.

Note that elements in an EventList could be subjected to minor cross-element compression.
Some fields can be omitted if they are either the same as or sequential to the previous element
in the current EventList. More details can be found in section 6.4.3.

Timestamp is mandatory in an event. There are two possible choices for timestamps: UTC and
System. UTC timestamp has a defined epoch and should be reasonably in sync with real world.
System time does not have a defined epoch nor any requirement on accuracy. For the need of
save over-the-wire packet size, each timestamp can be transmitted as delta to the immediately
previous event.

Table 9: Tags in TLV elements for events

Name Tag Description
Profile ID: Tag Value or Value
CS (Context Specific): Tag Value

CS: EventSource 1 Resource ID for the source of this event

CS: EventImportance 2 Importance level of this event

CS: EventID 3 Sequential ID within this importance level
4-9 Reserved

CS: EventRelatedImportance |10 Importance level of the related event of the

same source

CS: EventRelatedEventID 11 ID of the related event of the same source

CS: EventUTCTimestamp 12 UTC-synchronized timestamp of when this
event was generated. If the publisher does
not support time synchronization,
EventSystemTimestamp must be used
instead.

CS: EventSystemTimestamp 13 System timestamp of when the event was
generated. May be omitted when
EventUTCTimestamp is present.

CS: EventResourcelD 14 Resource ID for the subject of this event

CS: EventTraitProfilelD 15 Profile ID for schema definition of this trait

Nest Labs, Inc., 2016 Page 47 of 67

WDM Next Protocol Specification

CS: EventTraitInstancelID 16 Trait instance of the subject of this event
CS: EventType 17 Type defined within this trait

18-29 Reserved

CS: EventDeltaUTCTime 30 Used to compress the UTC timestamp in the
current EventList.

CS: EventDeltaSystemTime 31 Used to compress the system timestamp in
the current EventList.

32-49 Reserved

CS: EventData 50 Actual data for this event

Figure 38: Listing: event schema

{

EventSource = Optional, could be any value of any type, default to resource ID of the current
publisher. The resource which generated this event.

EventImportance = Optional, unsigned integer value, default to the same value of the
previous element in the current EventList.

EventID = Optional, unsigned integer value, default to the next unsigned integer to EventID
of the previous element in the current EventList.

RelatedEventImportance = Optional, unsigned integer value, Event Importance of the
event this one relates to. Note this event can only be generated by the same EventSource.

RelatedEventID = Optional, unsigned integer value, Event ID of the event this one relates
to. Note this event can only be generated by the same EventSource.

EventUTCTimestamp = Optional, unsigned integer value, number of milliseconds since 0:0:0
1/1/1970 UTC. This information is only for reference, as the clock on a publisher could be off,
and adjusted abruptly or even backwards.

EventDeltaUTCTime = Optional, signed integer value, number of milliseconds since the
previous event in the current EventList. Note this value could be zero or even negative.

EventSystemTimestamp = Optional, unsigned integer value, number of milliseconds from an
arbitrary point in time, for example, since boot. This information is only for reference, as neither
epoch nor linearity is guaranteed.

Nest Labs, Inc., 2016 Page 48 of 67

WDM Next Protocol Specification

EventDeltaSystemTime = Optional, signed integer value, number of milliseconds since the
previous event in the current EventList. Note this value could be zero or even negative.

EventResourcelID = Optional, could be any value of any type, default to EventSource. The
resource which this event is about. Note this field is only needed if the event was generated by
EventSource, only to describe what was happening on another resource.

EventTraitProfileID = Mandatory, 32-bit unsigned integer value, trait profile ID which
generates this particular event

EventTraitInstanceID = Optional, unsigned integer value, default to 0.
EventResourcelD-specific ID for trait instance which generates this particular event.

EventType = Optional, unsigned integer value, default to the same value of the previous
element in the current EventList. Together with EventTraitProfilelID, EventType
provides a complete link to the schema required to verify or interpret the EventData type
below.

EventData = Mandatory. The type is collectively defined by EventResourcelID,
EventTraitProfilelID, EventType. EventTraitInstancelID could also affect the
schema if there is any optionality. See [6] for reference. When there is no EventbData
associated with the event, implementations should set the value of this tag to NULL.

}

6.4.3. Event list

Within the WDMEventList field, the full event representation may be compressed, subject to
the following rules:

e Events are ordered by Event Importance, highest importance first.

First event in any EventImportance always carries the full (UTC/System)Timestamp and
EventID.

e (UTC/System)Timestamp may be replaced with a Delta(UTC/System)Timestamp that
relates the timestamp of the event to the previous timestamp in the list regardless of
importance of the consecutive events in the stream. Presence of both
(UTC/System)Timestamp and Delta(UTC/System)Timestamp should be considered an
error; in that case, the implementations should ignore the Delta(UTC/System)Timestamp.

e |[fthe EventID is sequential with respect to the EventID within the current importance
event stream, it may be omitted.

e EventImportance may be omitted if it is the same as the EventImportance of the
preceding event.

e |[f the ID of the publisher is equal to the Source1D of the event, the SourceID field may
be omitted.

Nest Labs, Inc., 2016 Page 49 of 67

WDM Next Protocol Specification

e EventType may be omitted if it is the same as the EventType of the preceding event.
This optimization may be most useful for debug events.

The example below explores a compression scheme for a sequence of events.= Events are
represented in a JSON notation, but the representation maps directly onto a Weave TLV
encoding. Consider the event definitions from Section 5.6.1. augmented with an unrelated
temperature reading (different importance level) and an unrelated liveness event. In the
compression scenario below, the publisher is a Flintstone with node id 0x18B43000000BEEFF;
that Flintstone additionally monitors the liveness of a Pinna with a node ID
0x18B430000000CAFE. The full representation of events (as they were generated) might look as
follows. For brevity, in examples below, we collapse the tuple of (EventProfilelID,
EventType) into EventType, and omit the EventTraitInstanceID altogether.

{eventSource: 0x18B43000000BEEFF, eventImportance:
LOG _PRODUCTION, 0x18B43000000BEEFF, eventType:
TemperatureReading, eventData: {temperatureInC: 25}}}

{eventSource: 0x18B43000000BEEFF, eventImportance:
LOG_PRODUCTION, eventID: 1236, relatedEventID: 1236,
UTCtimestamp: 1459966878420, eventResource: 0x18B430000000CAFE,
eventType: Liveness, eventData: {status: Unreachable}}}

{eventSource: 0x18B43000000BEEFF, eventImportance:

LOG _PRODUCTION, eventID: 1237, relatedEventID: 1234,
UTCtimestamp: 1459966878520, eventResource: 0x18B43000000BEEFF,
eventType: Eventl, eventData: {happening finished: true}}}eventID:
1234, relatedEventID: 1234, UTCtimestamp: 1459966878020, eventResource:
0x18B43000000BEEFF, eventType: StartEvent, eventData: {}}}

{eventSource: 0x18B43000000BEEFF, eventImportance: LOG PRODUCTION, eventID:
1235, relatedEventID: 1234, UTCtimestamp: 1459966878120, eventResource:
0x18B43000000BEEFF, eventType: Eventl, eventData: {happening: "It
happened"}}}

{eventSource: 0x18B43000000BEEFF, eventImportance: LOG INFO, eventID: 3469,
relatedEventID: 3469, UTCtimestamp: 1459966878220, eventResource:

Applying the rules for omitting the redundant fields per rules from Section 5.6.1, we would
observe the following encoding.

{eventSource: 0x18B43000000BEEFF, eventImportance: LOG PRODUCTION,
eventID: 1234, UTCtimestamp: 1459966878020, EventType: StartEvent,
EventData: {}}}

Nest Labs, Inc., 2016 Page 50 of 67

WDM Next Protocol Specification

{eventSource: 0x18B43000000BEEFF, eventImportance: LOG PRODUCTION,
eventID: 1235, relatedEventID: 1234, UTCtimestamp: 1459966878120,
EventType: Eventl, EventData: {happening: "It happened"}}}

{eventSource: 0x18B43000000BEEFF, eventImportance: LOG INFO,
eventID: 3469, UTCtimestamp: 1459966878220, EventType:
TemperatureReading, EventData: {temperatureInC: 25}}}

{eventSource: 0x18B43000000BEEFF, eventImportance: LOG PRODUCTION,
eventID: 1236, UTCtimestamp: 1459966878420, eventResource:
0x18B430000000CAFE, EventType: Liveness, EventData: {status:
Unreachable} }}

{eventSource: 0x18B43000000BEEFF, eventImportance: LOG PRODUCTION,
eventID: 1237, relatedEventID: 1234, UTCtimestamp: 1459966878520,
EventType: Eventl, EventData: {happening finished: true}}}

According to rules specified in this section, if the publisher observes that on this particular
subscription it has delivered event 1233 for LOG_PRODUCTION and event 3468 for
LOG_INFO, the encoding becomes:

{eventImportance: LOG PRODUCTION, eventID: 1234, UTCtimestamp:
1459966878020, EventType: StartEvent, EventData: {}}}

{deltaUTCTimestamp: 100, relatedEventID: 1234, EventType: Eventl,
EventData: {happening: "It happened"}}}

{eventResource: 0x18B430000000CAFE, deltaUTCTimestamp: 100,
EventType: Liveness, EventData: {status: Unreachable}}}

{relatedEventID: 1234, deltaUTCTimestamp: 100, EventType: Eventl,
EventData: {happening finished: true}}}

{eventImportance: LOG INFO, eventID: 3469, UTCtimestamp:
1459966878220, EventType: TemperatureReading, EventData:
{temperatureInC: 25}}}

After the above events have been successfully delivered to the subscriber, that is. the publisher
received the NotificationResponse () with a status code

CommonProfile:kStatus Success, the publisher updates its subscription state to reflect it
has delivered event 1237 for LOG_PRODUCTION and event 3469 for LOG INFO.

Nest Labs, Inc., 2016 Page 51 of 67

WDM Next Protocol Specification

6.5. Subscription initiation

6.5.1. Subscribe request

This message is sent from a client to a publisher.

If present, SubscriptionID means that this request is the second part of a mutual
subscription. Both parts of a mutual subscription share the same subscription ID and liveness
status.

SubscribeTimeOutMin and SubscribeTimeOutMazx, if present, describe the range of the
time period between the subscribe confirm request messages a client can support to send to the
publisher in number of seconds.

VersionList, if present, describes the current version for the trait instance pointed by every
path in the path list held at the client. If any of the versions is NULL, or there are conflicting
versions of the same targeted trait instance, the publisher will assume the client doesn’t have
any prior versions of the targeted trait instance. If not present, the publisher will assume the
client doesn’t have a prior version of any trait instance.

A client is responsible for removing redundancy in the path list, otherwise, redundant data could
be sent to the client in subsequent communications. For example, if a path already points to the
root of some trait instance, there shouldn’t be another path pointing to a subtree of the same
trait instance. While this behavior is not seen as an error, it wastes resources.

Elements SubscribeToAllEvents and LastObservedEventIdList are designed for
event delivery. SubscribeToAllEvents, if true, indicates the client’s intention to receive all
events generated by this publisher. There is no filtering or scoping defined in this version of the
protocol. LastObservedEventIdList is an array of tuples describing, for each event
importance, what is the last event ID and resource ID this client has received from this
publisher. If a particular combination of (SourcelID, EventImportance, EventID)is not
represented in the list, the publisher will assume that the subscriber requested (SourcelD,
EventImportance, 0), such as events for that particular SourceID, EventImportance
from the beginning of the event buffer.

Table 10: TLV elements in the payload of Subscribe request

Tag Valu | Description

e
CS: SubscriptionID 1 ID for this subscription
CS: SubscribeTimeOQutMin 2 Timeout in seconds

Nest Labs, Inc., 2016 Page 52 of 67

WDM Next Protocol Specification

CS: SubscribeTimeOutMax 3

CS: SubscribeToAllEvents 4 True if this client demands to receive all
events generated locally with all events
proxied through this node

CS: LastObservedEventIdList |5 List of previously observed events

6-19 Reserved

CS: pathlist 20 Combined, records in both arrays should

specify the path to subscribe to, and for any

CS:versionList 21 particular path, which version is current in the

client’s cache.

CS: sourcelID 1 Combined, these three properties uniquely
determines the last event ever observed from

CS: EventImportance 2 this particular source

CS: EventID 3

Figure 39: Listing: Subscribe request payload example schema

AnonymousTag = {

SubscriptionID = Optional, unsigned integer value

SubscribeTimeOutMin = Optional, unsigned integer value, seconds. Default is 1 second
if absent.

SubscribeTimeOutMax = Optional, unsigned integer value, seconds. Default is
2147483647 seconds if absent.

SubscribeToAllEvents = Optional, boolean. Default is false if absent.

LastObservedEventIdList = Optional, must contain at least one element if present [

Elements in this array are anonymous structures of the same schema.

{

SourceID = Optional, could be any type and any value, default to the resource
ID of the publisher. This is for the resource which generated the last observed event
described in this element.

EventImportance = Mandatory, unsigned integer value. Every importance
level must only appear at most once in LastObservedEventIdList.

EventID = Mandatory, unsigned integer value.

Nest Labs, Inc., 2016 Page 53 of 67

WDM Next Protocol Specification

]

PathList = Optional, must contain at least one path if present [
<lst path>
<2nd path>
<3rd path>

]

Versionliist = Optional, a Version List

6.5.2. Subscribe response

The Subscribe response message is sent from a publisher to a client usually following a series
of fragmented subscribe response messages, all in the same exchange context where the
original subscribe request entered.

SubscriptionID is an unsigned integer generated at the publisher. The recommended value
is 64-bit generated by a secure random number source. The reason why is to avoid various
types of conflict and can be seen as a unique ID on both the publisher and the client, even in
the mutual subscription cases.

If present, SubscribeTimeOut means the publisher will consider this subscription dead if
there is no any activity regarding the subscription in that time period. That implies a client should
also monitor the activity and send additional subscribe confirm request messages occasionally
to avoid termination of the subscription. To make a reasonable choice for this value, a publisher
should consider using SubscribeTimeOutMin and SubscribeTimeOutMax in the
subscribe request. If this value is not acceptable by the client, it could cancel the subscription.

In the absence of SubscribeTimeOut, the publisher will not terminate the subscription just
because of periods of inactivity.

Regardless of the timeout setting, the client is still free to send subscribe confirm requests when
it has to verify the liveness of the subscription. The publisher is not allowed to use this
mechanism.

The array LastVendedEventIdList contains information for every combination of resources
and event importances this publisher can deliver now. The event ID belongs to either the last
vended event from this publisher, or the last re-published event from the resource ID. If the
publisher hasn’t published any event of a particular importance, or if a publisher hasn’t
re-published any event of some importance for some publisher, there would be no elements
describing those combinations.

Nest Labs, Inc., 2016 Page 54 of 67

WDM Next Protocol Specification

PossibleLossOfEvents is a best effort made by the publisher to warn a client about the
possibility of event loss between subscriptions. This is a global setting and not directly

associates with any event source or importance.

Table 11: TLV elements in the payload of Subscribe response

Tag Value | Description

CS: SubscriptionID 1 ID for this subscription

CS: subscribeTimeOut 2 Timeout in seconds

3-9 Reserved

CS: PossibleLossOfEvents 10 True if there could have been some loss of
event

CS: LastVendedEventIdList |11 Array of last vended event IDs by this

CS: sourceID 1 Combined, these three properties uniquely
determines the last event ever vended from a

CS: EventImportance 2 particular source

CS: EventID 3

Figure 40: Listing: Subscribe response payload example schema

AnonymousTag = {

SubscriptionID = Mandatory, unsigned integer value

SubscribeTimeOut = Optional, integer value, seconds

PossiblelLossOfEvents =

Optional, boolean value. Default to false if absent.

LastVendedEventIdList = Optional but could only be present in subscription with

events. Must not be empty when present.

[

Elements in this array are anonymous structures of the same schema.

{

SourceID = Optional, could be any type and any value, default to the resource
ID of the publisher. This is for the resource which generated the last observed event

described in this element.

EventImportance

Mandatory, unsigned integer value. Every importance

level can only appear once in LastVendedEventIdList.

EventID = Mandatory, unsigned integer.

Nest Labs, Inc., 2016

Page 55 of 67

WDM Next Protocol Specification

6.6. Subscribe cancellation

6.6.1. Subscribe cancel request

This message can be sent from any party in a one-way or mutual subscription.

Table 12: TLV elements in the payload of Subscribe cancel request

Tag Value | Description

CS: SubscriptionID 1 ID for subscription to be canceled

Figure 41: Listing: Subscribe cancel request payload example/schema

AnonymousTag = {

SubscriptionID = Mandatory, unsigned integer value

6.6.2. Subscribe cancel response (status report)

On success, a status code of CommonProfile:kStatus Success [2] should be in the
status code.

On error, the most common status code could be WDM: ITnvalidSubscriptionID.

No matter what the status code is, the subscription is considered as terminated.

6.7. Subscribe liveness

6.7.1. Subscribe confirm request

This message can only be sent from a client to a publisher in a one-way or mutual subscription.

Table 13: TLV elements in the payload of Subscribe confirm request

Tag Value | Description

Nest Labs, Inc., 2016 Page 56 of 67

WDM Next Protocol Specification

CS: SubscriptionID 1 ID for subscription to be confirmed

Figure 42: Listing: payload for subscribe confirm request

AnonymousTag = {

SubscriptionID = Mandatory, unsigned integer value

6.8. Subscribe confirm response (status report)

On success, a status code of CommonProfile:kStatus Success should be in the status
code.

On error, status code would indicate the reason for this failure, and the subscription is
considered as terminated without an explicit cancel request.

6.9. Notification of changes

6.9.1. Notification request

All data elements in the data list don’t have to belong to the same trait instance, but all changes
regarding a version of any trait instance must be communicated in a single notification request.

Table 14: TLV elements in the payload of notification request

Tag Value Description
CS: SubscriptionID 1

2-9 Reserved
CS: Datalist 10

11-19 Reserved

CS: PossiblelossOfEvent 20

CS: UTCTimestamp 21
CS: SystemTimestamp 22
CS: EventlList 23

Nest Labs, Inc., 2016 Page 57 of 67

WDM Next Protocol Specification

Figure 43: Listing: Notification request payload example/schema

AnonvmousTag = {

SubscriptionID = Mandatory, unsigned integer value

DataList = Optional, must contain at least one data element if present |
<lst data element>
<2nd data element>

<3rd data element>

]

UTCTimestamp = Optional, unsigned integer. Number of milliseconds
since 0:0:0 1/1/1970 UTC. UTC timestamp at the publisher's side,
when the request was generated.

SystemTimestamp = Optional, unsigned integer. Number of
milliseconds since some arbitrary epoch. System timestamp at the
publisher's side, when the request was generated.

PossibleLossOfEvent = Optional, boolean value. Default to false if absent.
EventList = Optional, must contain at least one event if present |

<lst Event>

<2nd Event>

<3rd Event>

6.9.2. Notification response (status report)

On success, a status code of CommonProfile:kStatus Success [2] must be in the status
code.

If the client cannot accept the new value of any element in any data element in the Notification
request, it can set the status code to WDM: InvalidvalueInNotification, and populate
the TLV structure with a list of rejection records. In every record, the client can optionally
indicate the path and version being rejected, and the reason for rejection with an application
specific error code. Note this should not be considered as fatal to the subscription, but the client
becomes out of sync with the publisher for the data element mentioned in the rejection record.

Nest Labs, Inc., 2016 Page 58 of 67

WDM Next Protocol Specification

Table 15: TLV elements in the payload of Notification response

Tag Value | Description

CS:Rejectionlist |1 Array of rejection records

CS: RejectPath 1 Path being rejected. Copied from the notification request

CS: RejectVersion |2 Version being rejected. Copied from the notification
request

CS: RejectReason 3 Reason for rejection

Figure 44: Listing: Additional information on invalid data example/schema

AnonymousTag = {

RejectList = Optional, array of rejection records. must contain at least one element if
present

[

RejectPath = Mandatory, a path copied from the notification request being
rejected

RejectVersion = Mandatory, the version copied from the notification request
being rejected

RejectReason = Optional, Unsigned integer value for the reason of rejection.
This value is application specific, probably status code defined by the trait’s profile.

]
/* Additional tags can be added into this structure */
}

On any other error the subscription is considered as terminated without an explicit subscribe
cancel request.

Nest Labs, Inc., 2016 Page 59 of 67

WDM Next Protocol Specification

6.10. View

6.10.1. View request

The payload for a View request must be an anonymous TLV structure, which must contain one
TLV element: the path list. Any extra TLV element is seen as protocol error. An empty path list is
considered a protocol error as well.

Table 16: TLV elements in the payload of View request

Tag Value | Description

CS: PathList 1 Array of paths

Figure 45: Listing: View request payload example/schema

AnonvmousTag = {

Pathlist = Mandatory [
<lst Path>
<2nd Path>
<3rd Path>

6.10.2. View response

On error there should be a status report indicating the reason for failure. Some WDM specific
errors are listed in earlier section, including WDM: InvalidPath.

On success, the payload shall contain a data list with the same number of entries in the original
path list. Order of elements in the data list does not have to be the same as in the path list, but
every path in the original path list must has a matching data element in the response.

Table 17: TLV elements in the payload of View response

Tag Value | Description

CS: DatalList 1 Array of data elements

Figure 46: Listing: View response payload example/schema

AnonvmousTag = {

Nest Labs, Inc., 2016 Page 60 of 67

WDM Next Protocol Specification

DataList = Mandatory [
<lst data element>
<2nd data element>

<3rd data element>

6.11. Update

6.11.1. Update request

If present, ExpiryTime indicates the intention to limit till when the request could be queued at
various layers. A client should consider how inaccurate a publisher’s clock could be, and adjust
the expiry time accordingly. It's always possible that a publisher’s clock doesn’t allow it to honor
this request with very high accuracy.

If present, Argument contains any number of TLV elements of any type. The tags used for
these elements shall be profile tags. This is because the updating of all data elements of many
profiles/traits would share the same set of arguments.

DataList is mandatory and must contain at least one data element. In each Data Element
there is an optional DataElementVersion, indicating the intended version of this particular
section of update described by this data element. Note that a publisher is allowed to apply
elements in the data list in any order.

There is no transaction machinery in WDM updates. When an error is encountered at applying
some data element, it's usually impossible to revert the changes already applied in earlier data
elements. A client must assume an update could fail partially when it receives an error result or
timeouts.

Table 18: TLV elements in the payload of Update request

Tag Value | Description

CS: ExpiryTime 1 Indicates the intention to limit till when the request
could be queued at various layers. A client should
consider how inaccurate a publisher’s clock could be,
and adjust the expiry time accordingly. It's always
possible that a publisher’s clock doesn’t allow it to
honor this request with very high accuracy.

Nest Labs, Inc., 2016 Page 61 of 67

WDM Next Protocol Specification

2-9 Reserved

CS: Argument 10 Contains any number of TLV elements of any type.
The tags used in this container do not subject to the
same restrictions as in Update request and can be
context-specific, for the content is parsed by the trait
instance only.

11-19 | Reserved

CS: DatalList 20 Data to update

Authenticator Optional. The authenticator could be one of the
accepted profile-specific tags and the type and
schema would be defined by that.

Figure 47: Listing: Update request payload example/schema

AnonvmousTag = {

ExpiryTime = Optional, signed integer value, microseconds since 0:0:0 1/1/1970 UTC

Argument = Optional {
Example Argument 1 =Any value of any type, to be referenced when updating all
data elements

Example Argument 2 = Any value of any type, to be referenced when updating all
data elements

}

Datalist = Mandatory, must contain at least one data element [
<1st data element>
<2nd data element>
<3rd data element>

]
Authenticator = Optional.

6.11.2. In progress

There is no payload defined for this message.

Nest Labs, Inc., 2016 Page 62 of 67

WDM Next Protocol Specification

6.11.3. Update response (status report)

The status report contains three segments:

e 32 bit profile ID for both the status code and TLV additional data
e 16 bit status code
e Anonymous TLV structure containing additional information

The TLV structure can contain any custom information in any order, but a Version List is
mandatory when the status code is CommonProfile:kStatus Success [2].

Table 19: TLV elements in the payload of Update response

Tag Value | Description

CS: Versionlist 1 Version list used to reflect the current versions of
paths in the matching update request.

Figure 48: Listing: Additional information on success example/schema

AnonyvmousTag = {

VersionList = Mandatory, a Version List.

/* Additional tags can be added into this Structure */

}

Note that versionList should contain exactly the same number of entries as in DataList
of the update request, in the same order. It’s allowed if some of the elements are NULL in this
list, if the paths in matching update request is invalid or the version cannot be shared with this
client. Otherwise, the version list should be populated with current versions of the paths,
whether the update request succeeded or not.

6.12. Custom WDM command

This command request and response pair is designed to convey “commands” for specific profile,
sharing some concept with other WDM message like path, expiry time, and authenticator. The
need for WDM-defined command request and response message types comes from easing
design of message routing and processing.

6.12.1. Command request
Table 20: TLV elements in the payload of custom WDM commands

Tag Value Description

Nest Labs, Inc., 2016 Page 63 of 67

WDM Next Protocol Specification

CS: path

Provides more information about the operation that
needs to be taken, in addition to Profile ID and
command type that is already in the payload.

CS: CommandType 2 Unsigned integer, type id of this command, in the
scope of profile specified by Path

CS: ExpiryTime 3 Indicates the intention to limit till when the request
could be queued at various layers. A client should
consider how inaccurate a publisher’s clock could
be, and adjust the expiry time accordingly. It’s
always possible that a publisher’s clock doesn’t
allow it to honor this request with very high
accuracy.

CS: MustBeVersion 4 If the trait instance is not on this version, this
command shall be rejected.

5-19 Reserved
CS: Argument 20 This TLV structure contains any number of TLV

elements of any type. The tags used in this
container do not subject to the same restrictions as
in command request and can be context-specific,
for the content is parsed by the trait instance only.

Authenticator

Optional. The authenticator could be one of the
accepted profile-specific tags and the type and
schema would be defined by that.

Figure 49: Listing: Custom WDM command payload example/schema

AnonvmousTag = {

Path = Mandatory, additional information about the operation if present

CommandType = Mandatory, unsigned integer. unique command type id within the profile

specified in Path

ExpiryTime = Optional, signed integer value, microseconds since 0:0:0 1/1/1970 UTC

MustBeVersion =

Optional, unsigned integer value

Argument = Optional, TLV structure {

Example Argument 1 =Any value of any type

Example Argument 2 = Any value of any type

}

Authenticator

Optional

Nest Labs, Inc., 2016

Page 64 of 67

WDM Next Protocol Specification

6.12.2. In progress

There is no payload defined for this message.

6.12.3. Command response

Response message to a Custom Command could either a Status Report message, or a
Command Response message. A Status Report message is used whenever there is some error
detected in any of the layers the command flows through, and a full schema-conformant
Command Response message is not possible. The typical Weave Status Report of status code
and optionally Weave error code are carried in a Status Report message.

A Command Response message indicates the command has reached the application layer and
the “response” section conforms to pre-agreed schema for that command request. Note that the
definition of “success” is command-specific, and hence receiving a Command Response
message doesn’t necessarily mean the command succeeded. Version information is mandatory
no matter the result of the execution. It means either the current version or the version that
reflects the effect of this command.

Table 20: TLV elements in the payload of Command response

Tag Value | Description

CS:version 1 Current version of the trait instance as referenced by
the path in command request. Since there can be only
one path in the request, only one version is present in
the response.

CS: Response 2 This TLV structure contains any number of TLV
elements of any type. The tags used in this container
do not subject to the same restrictions as in command
request and can be context-specific, for the content is
parsed by the trait instance only.

Figure 50: Listing: Additional information on success example/schema

AnonymousTag = {

Version = Mandatory, unsigned integer.

Response = Optional, TLV structure {
Example Response 1 =Any value of any type

Example Response 2 = Any value of any type

Nest Labs, Inc., 2016 Page 65 of 67

WDM Next Protocol Specification

/* Additional tags can be added into this Structure */

7. Reference

1.

Weave: Data Management Profile (V2, the previous version of WDM)
https://docs.google.com/a/nestlabs.com/document/d/1THm_trFlvisGJpnNzzctBudrnR8AO
O-4_JrfliJL0Z1Y

Weave Status Report Profile
https://docs.google.com/a/nestlabs.com/document/d/14MFfl1ev2l -5zfpNey4pxbC2-m8M
ANuXkaP7W0eZ36Y

Weave TLV Format
https://docs.google.com/document/d/1TVWG79nUK8C9NaVk8BoDYTrd4F1ZJyjSu_pAIRfK
UuvWgyY

Trait design guidelines for this generation of Nest products (TBD)

Delivery of Events in WDM 0.4.0
https://docs.google.com/a/nestlabs.com/document/d/1Vkeps-3i3PGYXUPD5mZCwQL r4
sT_dIWuQY4LXr5BTOU

Event Definition in IDL 0.4
https://docs.google.com/a/nestlabs.com/document/d/1Tx-_161b9eXfvLv4fC_KDIkeHa1W
XXK4hxz7glg7-aY

WDM Request Authentication
https://docs.google.com/a/nestlabs.com/document/d/1BGFRJZWbTLjAViaUB10-FzG8a5
egKOIEal KF6srdBN4/edit?usp=sharing

Nest Labs, Inc., 2016 Page 66 of 67

https://docs.google.com/document/d/1VWG79nUK8C9NaVk8BoDYTr4F1ZJyjSu_pAIRfKUvWgY/edit
https://docs.google.com/a/nestlabs.com/document/d/1Hm_trFIvlsGJpnNzzctBudrnR8AOO-4_JrfIiJL0Z1Y/edit?usp=sharing
https://docs.google.com/a/nestlabs.com/document/d/1Tx-_l6Ib9eXfvLv4fC_KDIkeHa1WXXK4hxz7qLq7-aY/edit?usp=sharing
https://docs.google.com/document/d/1VWG79nUK8C9NaVk8BoDYTr4F1ZJyjSu_pAIRfKUvWgY/edit
https://docs.google.com/a/nestlabs.com/document/d/1Tx-_l6Ib9eXfvLv4fC_KDIkeHa1WXXK4hxz7qLq7-aY/edit?usp=sharing
https://docs.google.com/a/nestlabs.com/document/d/1BGFRJZWbTLjAViaUB10-FzG8a5egKOlEaLKF6srdBN4/edit?usp=sharing
https://docs.google.com/a/nestlabs.com/document/d/14MFf1ev2l_-5zfpNey4pxbC2-m8MANuXkaP7W0eZ36Y/edit?usp=sharing
https://docs.google.com/a/nestlabs.com/document/d/1BGFRJZWbTLjAViaUB10-FzG8a5egKOlEaLKF6srdBN4/edit?usp=sharing
https://docs.google.com/a/nestlabs.com/document/d/14MFf1ev2l_-5zfpNey4pxbC2-m8MANuXkaP7W0eZ36Y/edit?usp=sharing
https://docs.google.com/a/nestlabs.com/document/d/1Vkeps-3i3PGYXUPD5mZCwQLr4sT_dlWuQY4LXr5BT9U/edit?usp=sharing
https://docs.google.com/a/nestlabs.com/document/d/1Vkeps-3i3PGYXUPD5mZCwQLr4sT_dlWuQY4LXr5BT9U/edit?usp=sharing
https://docs.google.com/a/nestlabs.com/document/d/1Hm_trFIvlsGJpnNzzctBudrnR8AOO-4_JrfIiJL0Z1Y/edit?usp=sharing

