

Nest Weave

TLV

White Paper

Revision 4
2020-03-04

Status: Approved / Active

Copyright © 2020 Google LLC
Google LLC Public Information

APPROVED / ACTIVE

Revision History

Revision Date Modified By Description

1 2014-11-24 Grant Erickson Initial revision.

2 2015-02-25 Grant Erickson Final draft.

3 2015-06-03 Grant Erickson Updated quantitative analysis to include Flatbuffers.
Reran all quantitative analysis using GCC 4.8.2
targeted to an ARM Cortex A9 with a hard floating
point ABI.

4 2020-03-04 Grant Erickson Updated for CBOR.

Rev. 4 Copyright © 2020 Google LLC 2
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

Table of Contents

Revision History

Table of Contents

Summary

Introduction
Motivation and Rationale

Target System Resources
Core Message Format
Application Data Representation

Requirements
Capable of Representing Basic Machine Types
Capable of Representing Arrays
Capable of Representing Structures
Capable of Forward- and Backward-Compatibility
Capable of Representing Optional Content
Partitioned and Controlled Tag Space
System Neutrality
Resource Overhead
Trivial In-place Access of Basic Machine Types
Over-the-wire Compactness
Lossless Translation to JSON
Licensing and Seat Costs
Market Penetration
Proliferation and Quality of Infrastructure and Tools

Competitive Analysis
Summary
JSON
memcpy
Google Protocol Buffers

Trivial In-place Access of Basic Machine Types
ASN.1
EXI
Other

Thrift
CBOR

Partitioned and Controlled Tag Space

Rev. 4 Copyright © 2020 Google LLC 3
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

Trivial In-place Access of Basic Machine Types
Flatbuffers

Conclusion

Appendix A: Size Analysis
JSON
memcpy
Google Protocol Buffers

libprotobuf
Size
Speed

libprotobuf-lite
nanopb

Thrift
Flatbuffers
Weave
CBOR

References

Rev. 4 Copyright © 2020 Google LLC 4
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

Summary

This document describes the motivation, rationale, and competitive analysis that went into the
creation and definition of the Nest Weave: Tag Length Value (TLV) data representation format.
In the competitive analysis, comparisons are made against alternative representations such as
JSON, Google Protocol Buffers, ASN.1, EXI, Apache Thrift, and CBOR along a number of
evaluation criteria.

Rev. 4 Copyright © 2020 Google LLC 5
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

Introduction

This document describes the motivation, rationale, and competitive analysis that went into the
creation and definition of the Nest Weave: Tag Length Value (TLV) [5] data representation
format . 1

Motivation and Rationale

Target System Resources

At its outset, Nest Weave was designed with the intent to bring rich, highly-secure,
Internet-class IPv6 connectivity and applications to deeply-embedded devices within the home.
The capabilities of such devices are measured in storage resources such as dynamic RAM in
the 64 KiB to 128 KiB range and non-volatile flash in the 128 KiB to 512 KiB range and compute
resources of their 32-bit ARM Cortex M-class processors running at between 19 to 40 MHz.

In addition to these constrained computing devices, Weave further considered constrained
communications media beyond the world of Ethernet and WiFi and looked at the world of
IPv6-capable low-power networks such as 6LoWPAN, an IPv6 adaptation over 802.15.4, where
packet sizes are limited to 127 bytes and link data rates to 250 Kbps, both mere slivers of the
comparable metrics associated with Ethernet or WiFi.

As a consequence of these constrained computing devices and communication media, size was
and continues to be a dominant driving factor in the design of Weave and its constituent
components.

As the core components of Weave were being defined and as the definition for the basic
protocol message format was considered, a conscious decision was made to split the design
space into two:

● Core Message Format
● Application Data Representation

Core Message Format

The Weave Message Layer [4], while out of scope for this document, was made hand-tuned and
highly-structured and -defined to ensure a consistent, compact representation and
implementation that can support not only secure transport of arbitrary Weave message
exchanges over either TCP or UDP but also application protocols within those exchanges that
are either equally-structured and -defined or more flexibly-represented data along with a light to
modest amount of structure and definition.

1 Technically, this is actually Type Tag Length Value (TTLV); however, Type and Tag are packed into the
same field.

Rev. 4 Copyright © 2020 Google LLC 6
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

Application Data Representation

With the definition of the Weave Message Format defined, the design efforts focused on the
definition of an application data representation that could be used anywhere in Weave where a
tight, hand-tuned, explicit data format and representation would be either too restrictive or too
non-interoperable.

Before striking out to implement something anew, Nest conducted a broad market survey,
evaluating existing technologies against those criteria summarized in Table 1 and described
briefly below.

Requirements

Requirement Weight

Capable of Representing Basic Machine Types Heavy

Capable of Representing Arrays Heavy

Capable of Representing Structures Heavy

Capable of Forward- and Backward Compatibility Heavy

Capable of Representing Optional Content Heavy

Partitioned and Controlled Tag Space Heavy

System Neutrality Heavy

Resource Overhead Heavy

Trivial In-place Usage of Basic Machine Types Heavy

Over-the-wire Compactness Moderate

Lossless Translation to JSON Heavy

Licensing and Seat Costs Moderate

Market Penetration Light

Proliferation and Quality of Infrastructure and Tools Light

Table 1. Application data representation requirements and weighting.

Capable of Representing Basic Machine Types

This requirement gauges the native ability of the representation to symbolize basic machine
types typically encountered in embedded system runtime environments such as C and C++.
These types include:

● Null

Rev. 4 Copyright © 2020 Google LLC 7
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

● Booleans
● 8-, 16-, 32-, and 64-bit Signed and Unsigned Integers
● 32- and 64-bit IEEE 754-1985 Floating Point Numbers
● UTF-8 Character Streams
● Byte Streams

These plain-old-data (POD) basic types are the building blocks upon which all other aggregate
data types are constructed. Runtime environments can, of course, be built to operate on
abstract data representations; however, ultimately the resources required to do so is just
additional system resource overhead to effect and operate on this abstraction. Consequently,
representation of and efficient operation with these types is crucial.

Capable of Representing Arrays

This requirement gauges the native ability of the representation to represent a homogeneous
array of another primitive or aggregate type, such as an array of UTF-8 character strings or
signed integers.

Capable of Representing Structures

This requirement gauges the native ability of the representation to represent a heterogeneous
collection of other primitive or aggregate types, such as might be needed to represent personal
contact information consisting of a:

● first name
● last name
● title
● postal address
● e-mail address
● phone number

Capable of Forward- and Backward-Compatibility

This requirement gauges the ability of the representation to add new content and deprecate
existing content in the future without invalidating the entirety of the application-level
representation or protocol on the part of either the initiator or responder.

The presence of this feature allows:

● Old initiators to omit new content and have new responders cope by providing defaults.
● New initiators to emit new content and have old responders cope by ignoring it.

Capable of Representing Optional Content

This requirement gauges the ability of the representation to indicate optional content which,
whether present or absent, does not represent an error on the part of either the initiator or
responder. This is similar but not identical to support for backward- and forward-compatibility.

Rev. 4 Copyright © 2020 Google LLC 8
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

Partitioned and Controlled Tag Space

This requirement gauges whether the representation has a tag space for marking and tagging
data and whether, if present, that tag space may be partitioned and controlled in its entirety by
the Weave ecosystem and its participating partners.

This is an important requirement since Nest, with Weave, explicitly endeavors to not only tightly
manage a portion of the space but also to assign vendors their own tag space and to allow
vendors to extend that space as they see fit.

System Neutrality

This requirement gauges the ability of the representation to allow two systems with different
processors, operating systems, and runtime environments to successfully exchange and
interpret one another’s data.

This is a hallmark of nearly all data presentations and is one of the chief motivating factors in
their creation and existence.

Resource Overhead

This requirement gauges the ability of the core implementation as well as the encoders and
decoders to be efficiently represented in terms of read-only machine code as well as read-only
and read/write RAM space.

An ideal implementation would require little more than memcpy from the C Standard Library and
processor-native memory load and store operations (e.g. store and load 8-, 16-, 32-, and 64-bit
quantities).

Appendix A: Size Analysis contains a detailed resource assessment of several competitive
representation technologies.

Trivial In-place Access of Basic Machine Types

This requirement gauges the ability of the representation to handle encoding and decoding of
the aforementioned basic machine types through the use of memcpy from the C Standard
Library or processor-native memory load and store operations, potentially along with byte
swapping operations.

Representations that excel here largely facilitate in-place operation on over-the-wire data which
impacts system memory requirements.

Rev. 4 Copyright © 2020 Google LLC 9
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

Over-the-wire Compactness

This requirement gauges the efficiency of the representation in encoding a given set of native
machine data into the least number of bytes.

Achieving low- or high-degrees of over-the-wire compactness comes with trade-offs against
both the Resource Overhead and Trivial In-place Access of Basic Machine Types requirements
by increasing the amount of encoding and decoding that must take place before the represented
data can be either remotely-transmitted or locally-manipulated.

Lossless Translation to JSON

This requirement gauges the ability of the representation to trivially and mechanically map to
and from a JSON-based representation without data loss and without application- and
content-specific knowledge.

JSON is the effective lingua franca of the RESTful APIs of the modern Internet and is the core
backbone of much of the cloud server infrastructure behind those APIs. As a consequence, a
representation that can trivially and losslessly map to and from JSON presents an opportunity to
achieve maximum leverage of that infrastructure while still meeting the constraints of the Weave
ecosystem.

Licensing and Seat Costs

This requirement gauges the capital and operational expense of acquiring and supporting a
particular implementation for a representation.

Market Penetration

This requirement gauges the scope of adoption of the representation in the overall marketplace.
Broad market penetration will have a tendency to imply a broad number of implementations,
tools, development resources, support resources, and other resources.

Proliferation and Quality of Infrastructure and Tools

This requirement is a subset of the Market Penetration requirement and specifically gauges the
proliferation and quality of infrastructure and tools available to support the development, testing,
integration, and support of the data representation. Broad infrastructure and tools availability
potentially makes an easier entry point for ecosystem developers and lowers development and
support costs for ecosystem device vendors.

Competitive Analysis

Using the requirements outlined above, we analyzed the following data representations for use
in Weave:

Rev. 4 Copyright © 2020 Google LLC 10
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

● JSON
● memcpy
● Google Protocol Buffers
● ASN.1
● EXI
● Thrift
● CBOR

before coming up the design and implementation that is Weave TLV.

Summary

Criteria

Representation

JSON memcpy
Google
Protocol
Buffers

ASN.1 EXI Thrift CBOR Weave
TLV

Capable
of
Represen
ting Basic
Machine
Types

Partial Yes Yes Partial Partial Partial Yes Yes

Capable
of
Represen
ting
Arrays

Yes Yes Yes Yes Yes Yes Yes Yes

Capable
of
Represen
ting
Structures

Yes Yes Yes Yes Yes Yes Yes Yes

Capable
for
Forward-
and
Backward
-Compati
bility

Yes No Yes Yes Yes Yes Yes Yes

Capable
of
Represen
ting
Optional
Content

Yes No Yes Yes Yes Yes Yes Yes

Partitione
d and
Controlled
Tag

Maybe No Partial Yes No Yes Partial Yes

Rev. 4 Copyright © 2020 Google LLC 11
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

Space

System
Neutrality High Low High High High High High High

Resource
Overhead High Low Variable 2 High High High Moderate Moderate

Trivial
In-place
Access of
Basic
Machine
Types

No Yes Partial No No No Partial Yes

Over-the-
wire
Compactn
ess

Low Low Moderate Variable 3 Low Variable 4 Moderate Moderate

Lossless
Translatio
n to
JSON

Yes No Mostly No No Mostly Mostly Mostly

Licensing
and Seat
Costs

Low Low Low High Low Low Low Low

Market
Penetratio
n

High High Moderate Moderate Low Moderate Low Low

Proliferati
on and
Quality of
Infrastruct
ure and
Tools

High High Moderate High Low Moderate Moderate Low

Table 2. Summary of data representations.

JSON

JSON, while the lingua franca of the RESTful modern Internet, simply has an over-the-wire
representation that is too large and system resource overhead that is too great given the
required encoding and decoding to move from the representation to native data types.

Consequently, while it works great for backend server infrastructure and can work well with
cellphone-class embedded systems, its advantages decay when pushed into the deeply
embedded world of devices Weave endeavors to address.

2 Resource overhead varies from moderate to high depending on whether the Google reference
implementation libprotobuf or the alternate nanopb is used.
3 Supports a variety of encoding types that range from low to high in over-the-wire compactness.
4 Supports a variety of encoding types that range from low to high in over-the-wire compactness.

Rev. 4 Copyright © 2020 Google LLC 12
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

JSON, therefore, fails on the following requirements:

● Resource Overhead
● Trivial In-place Access of Basic Machine Types
● Over-the-wire Compactness

memcpy

This representation is a proxy for all bespoke, hand-tuned data representations, including those
that simply agree on a byte order and then effectively byte-swap and memcpy types into and out
of network buffers, potentially with some shifting and masking.

This representation has compelling attributes across the board but fails the following
requirements:

● Capable of Forward- and Backward-Compatibility
● Representation of Optional Content
● Partitioned and Controlled Tag Space
● Lossless Translation to JSON

That said, this stood and still stands as a benchmark representation.

Google Protocol Buffers

Google Protocol Buffers (protobufs) was originally developed as a Google-internal
representation and remote procedure call (RPC) mechanism emphasizing simplicity and
performance, attempting to best XML and one other representation considered here, ASN.1.

Through its efforts to open source the implementation, protobufs have received broader
marketplace adoption outside of Google.

However, protobufs optimized for a different design center on a number of different fronts. Chief
among them was in the area of low resource overhead.

The Google reference implementation includes two C/C++ codecs, libprotobuf and
libprotobuf-lite. However, the recommended application space for even libprotobuf-lite, “more
appropriate for resource-constrained systems such as mobile phones” [3], is dramatically out of
scope relative to what Weave considers to be a resource-constrained device.

In addition, Google has carved out a chunk of the usable tag space for Protocol Buffers, making
adopting into the Weave ecosystem difficult.

Ultimately, Google Protocol Buffers did not meet the following requirements:

● Partitioned and Controlled Tag Space
● Resource Overhead

Rev. 4 Copyright © 2020 Google LLC 13
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

● Trivial In-place Access of Basic Machine Types

Trivial In-place Access of Basic Machine Types

With respect to trivial in-place access of basic machine types, protobufs, like thrift, focuses on
arm’s length programmer interaction and high-compression, yet high-overhead, “zig-zag”
encoding for integer data, which results in and represents an effective double-buffer that
increases stack or global data overhead, depending on reentrancy needs of the application.
This is shown in Figure 1 below.

Figure 1. Illustration of Weave TLV versus Google Protocol Buffers approach to encoding.

ASN.1

Borne out of computing and telecommunications standardization efforts in the mid-1980s,
ASN.1 defines a notation for data representation with a suite of defined encoding rules,
encoding the notation into representations such as XML (XER) or tightly-packed binary (PER).

Due to its early standardization, ASN.1 has been broadly adopted; however, primarily in the
legacy Internet in protocols such as LDAP or SNMP where representations such as JSON or
XML have become ascendant.

ASN.1 has nearly infinite flexibility; however, this comes with trade-offs that made it unsuitable
for Weave.

Ultimately, ASN.1 failed to meet the following requirements:

● Capable of Representing Basic Machine Types
● Resource Overhead
● Trivial In-place Access of Basic Machine Types
● Over-the-wire Compactness
● Lossless Translation to JSON
● Licensing and Seat Costs

Rev. 4 Copyright © 2020 Google LLC 14
2020-03-04 Google LLC Public Information

https://drive.google.com/a/google.com/open?id=1UC40uOD-lIOC66RnZsLbVtgL6UosX-O9QgGB9vDlUpc

APPROVED / ACTIVE

In terms of Licensing and Seat Costs, while ASN.1 is a fairly open standard, in our
implementation survey, we were unable to find any high-performance, well-supported,
open-source implementations.

EXI

The Extensible XML Interchange (EXI) representation was borne out of the many efforts to
make the storage and transmission of the Extensible Markup Language (XML) representation
more space-efficient.

It has traditionally and most-commonly been paired with the Constrained Application Protocol
(CoAP) as well as with HTTPS in the context of the ZigBee Smart Energy Profile (SEP) 2.0.

Unfortunately, because of the nearly-infinite inherent expressiveness of XML and the
highly-compact binary encoding, EXI failed on the following fronts:

● Resource Overhead
● Trivial In-place Access of Basic Machine Types
● Partitioned and Controlled Tag Space
● Over-the-wire Compactness
● Lossless Translation to JSON
● Market Penetration
● Proliferation and Quality of Infrastructure and Tools

That the CoAP effort has all but abandoned EXI (as the preferred CoAP application layer
encoding) in favor of CBOR is an implicit confirmation of the lack of suitability of EXI for the
Weave ecosystem.

Other

The following technologies were not initially surveyed when the initial analysis was done around
the creation of Weave TLV, either due to similarity with a technology already under evaluation or
a creation date that came after Weave TLV.

Thrift

Thrift has many similarities to Google Protocol Buffers and has achieved, through its adoption at
Facebook, similar if not broader levels of marketplace penetration.

However, in addition, Thrift adds built-in mechanisms for both performing and managing RPC,
something explicitly out of scope for Weave. Consequently, Thrift was not analyzed in depth,
failing the following requirements:

● Capable of Representing Basic Machine Types
● Partitioned and Controlled Tag Space
● Resource Overhead
● Trivial In-place Access of Basic Machine Types

Rev. 4 Copyright © 2020 Google LLC 15
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

CBOR

The Concise Binary Object Representation (CBOR) IETF draft was submitted the same month
that the Weave TLV implementation was completed and, as a consequence, was unavailable
for competitive evaluation at that time.

CBOR is intended to go hand-in-hand with the Constrained Application Protocol (CoAP) and to
displace EXI as the preferred data representation for CoAP, addressing EXI’s many
shortcomings.

Relative to Weave TLV, CBOR has many of the same design motivations and requirements
and, in its realized design, many of the same attributes. However, CBOR is at the same time, far
looser by allowing any other CBOR type—including an array or structure—to act as a tag or key,
thereby eliminating in its full implementation Lossless Translation to JSON and greatly
increasing the complexity of its implementation at full specification.

From a market adoption perspective, CBOR offers a wealth of liberally-licensed open source
implementations in C and C++, among other languages, including those listed in Table 3 below.

Project Language Build License Maintainer Active Project?

tinycbor C make MIT Intel Y

QCBOR C make BSD 3-Clause Laurence Lundblade Y

jsoncons C++ cmake Boost Software License v1 Daniel Parker Y

cbor-lite C++ cmake Public Domain Kurt Zeilenga Y

libcbor C cmake MIT Pavel Kalvoda Y

cborg C++ - Apache v2 ARM N

cppbor C++ cmake BSD 2-Clause David Preece N

cbor-cpp C++ cmake Apache v2 Stanislav Ovsiannikov N

cn-cbor C cmake MIT Carsten Bormann N

scsp C/C++ make Apache v2
MIT

Vitaly Shukela N

Table 3. Survey of open source CBOR C or C++ implementations.

Relative to Weave TLV, the downsides of CBOR are:

● Partitioned and Controlled Tag Space
● Trivial In-place Access of Basic Machine Types

Rev. 4 Copyright © 2020 Google LLC 16
2020-03-04 Google LLC Public Information

https://github.com/intel/tinycbor
https://github.com/laurencelundblade/QCBOR
https://github.com/danielaparker/jsoncons
https://bitbucket.org/isode/cbor-lite/src/master/
https://github.com/PJK/libcbor
https://github.com/ARMmbed/cborg
https://github.com/rantydave/cppbor
https://github.com/naphaso/cbor-cpp
https://github.com/cabo/cn-cbor
https://github.com/vi/simple_cbor_stream_parse

APPROVED / ACTIVE

Partitioned and Controlled Tag Space

As documented in “Concise Binary Object Representation (CBOR) Tags” [6], the tag space for
CBOR is partitioned into 8-bits of either standards action or specification required reserved
space and the remaining 56-bits as first-come, first-served. This effectively makes tags in CBOR
ecosystem-specific and means that across ecosystems, data in flight or at rest encoded with
CBOR may collide, at worst, or be ambiguously tagged, at best.

To avoid or overcome either of these situations, CBOR encoded data would need to be further
qualified or wrapped, increasing the complexity and size of the encoded data.

Trivial In-place Access of Basic Machine Types

CBOR falls somewhere between encoding and serialization formats such as Protocol Buffers or
Thrift and formats such as Weave TLV. Where some types, and sizes of those types, can
support trivial in-place access and others use more complicated encoding schemes that
preclude such access. For data patterns that bias towards the latter, those applications will see
an increase in code size due to the implementation complexity necessary to encode and decode
such data.

Flatbuffers

Flatbuffers is a cross-platform serialization library developed by Google, as an alternative to
protobufs, optimized for game development and other performance-sensitive applications.
Emphasis is placed on the following criteria, many of which are very similar to Weave TLV:

● Trivial In-place Access of Basic Machine Types
● Capable for Forward- and Backward-Compatibility
● Capable of Representing Optional Content
● Low Resource Overhead

Flatbuffers, across most quantitative comparison criteria, is close to Weave. However, it loses
out because of the overhead of the Flatbuffer vtable which, while offering fast access to arbitrary
elements of the buffer, increases over-the-wire size.

In addition, Flatbuffers has dependencies on both C++ STL and the C++11 standard, which
increase the platform requirements relative to Weave.

Conclusion

In the rich world of historical and current competitive technologies in the realm of
platform-independent data presentation and exchange, Weave TLV provides a solid balance of
attributes. These attributes make it well-suited to provide a long-lasting, evolving foundation for
deeply-embedded, Internet-connected devices from multiple parties. At the same time, easy and
seamless translation to JSON make it an ideal data representation vehicle to match the needs
of Internet-enabled services today.

Rev. 4 Copyright © 2020 Google LLC 17
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

Appendix A: Size Analysis

To exercise and quantify not only the feature capabilities of each representation but also the
efficiency of various data representation implementations, we decided to create a test case.

The test case is based on a C/C++ native struct, shown in Listings 1 through 7 below. From
there, a data representation was made in each technology and the over-the-wire size measured
as well as the size of the resulting code and data necessary to marshal the native struct into the
representation. The summary of these sizes is shown in Table 4 below. In the table, Core
represents the size contributions, if any, of the core library supporting the representation,
common to any application use case. Application represents the size contributions for encoding
the particular use cases exemplified in this document.

enum CapType {

Proximity = 1,

Temperature = 2,

SixLoWPAN = 3,

WiFi = 4,

Gateway = 5,

Heat = 6,

Cool = 7,

Light = 8

};

Listing 1. Native C language test definition for a capability type enumeration.

struct KVPair {

char kvKey[11];

char kvValue[33];

};

Listing 2. Native C language test definition for a key/value pair.

struct Capability {

CapType capType;

bool enabled;

KVPair kvpair;

};

Listing 3. Native C language test definition for a capability.

struct Device {

uint16_t vendorId;

uint16_t deviceType;

uint8_t serialNumberLength;

char serialNumber[32];

uint8_t publicKey[16];

uint32_t lastSeenTime;

Capability capabilities[32];

Rev. 4 Copyright © 2020 Google LLC 18
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

};

Listing 4. Native C language test definition for a network device.

struct Fabric {

char id[41];

uint8_t groupSecret[16];

char password[2][17];

};

Listing 5. Native C language test definition for a network fabric.

struct Directory {

Fabric fabric;

Device device[4];

};

Listing 6. Native C language test definition for a network directory.

static const struct Directory sDirectory = {

// Fabric

{

“Fabric #1”,

 { ‘a’, ‘s’, ‘d’, ‘f’, ‘q’, ‘w’, ‘e’, ‘r’, ‘t’, ‘y’ },

 {

“password1”,

“password2”

},

},

// Devices

{

// Device 0

{

0x235A,

0x0002,

16,

{

‘0’, ‘2’, ‘A’, ‘A’, ‘0’, ‘1’, ‘A’, ‘B’,

‘3’, ‘2’, ‘1’, ‘2’, ‘0’, ‘0’, ‘0’, ‘0’

},

{

0xb9, 0xad, 0x7f, 0x03,

0x9f, 0x0f, 0xf1, 0x67,

0x79, 0xb7, 0x39, 0xdd,

0x93, 0x88, 0xae, 0xea

},

0x0,

{

{ Temperature, true, { “key1”, “val1” } },

{ }

}

},

// Device 1

Rev. 4 Copyright © 2020 Google LLC 19
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

{

0x235A,

0x0002,

16,

{

‘0’, ‘2’, ‘A’, ‘A’, ‘0’, ‘1’, ‘A’, ‘B’,

‘3’, ‘2’, ‘1’, ‘2’, ‘0’, ‘0’, ‘0’, ‘1’

},

{

0xb0, 0x3d, 0x7a, 0x07,

0xf2, 0x89, 0xe5, 0x34,

0x23, 0x55, 0xd8, 0x4e,

0xb7, 0xda, 0xec, 0x71

},

0x0,

{

{ Proximity, true, { “key2”, “val2” } },

{ }

}

},

// Device 2

{

0x235A,

0x0002,

16,

{

‘0’, ‘2’, ‘A’, ‘A’, ‘0’, ‘1’, ‘A’, ‘B’,

‘3’, ‘2’, ‘1’, ‘2’, ‘0’, ‘0’, ‘0’, ‘2’

},

{

0x88, 0x6c, 0x74, 0x27,

0x7b, 0x65, 0x8e, 0xf5,

0x1d, 0xc7, 0xd2, 0xb0,

0x4f, 0x80, 0x9a, 0xff

},

0x0,

{

{ Light, true, { “key3”, “val3” } },

{ }

}

},

// Device 3

{

0x235A,

0x0002,

16,

{

‘0’, ‘2’, ‘A’, ‘A’, ‘0’, ‘1’, ‘A’, ‘B’,

‘3’, ‘2’, ‘1’, ‘2’, ‘0’, ‘0’, ‘0’, ‘3’

},

{

0xbd, 0x14, 0x06, 0xaf,

0x9d, 0xeb, 0xe4, 0xc0,

Rev. 4 Copyright © 2020 Google LLC 20
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

0x41, 0xbc, 0x0e, 0xf8,

0x96, 0xfb, 0x69, 0x1e

},

0x0,

{

{ Temperature, true, { “key4”, “val4” } },

{ }

}

},

}

};

Listing 7. Native C language test declaration for a sample network directory data.

Represent
ation

Product Over-the-
wire Size

/ B

Application Core

Serialization
Code Size / B

Serialization
Data Size / B

Stack
Data Size /

B

Code
Size / B

Data
Size / B

JSON mjson-1.3 965 4,1621 0 28 22,6202 0

memcpy - 6,5913 0 0 0 0 0

Google
Protocol
Buffers

protobuf-2.6.0
(libprotobuf
size-optimized)

313 25,448 112 60 632,040 857

protobuf-2.6.0
(libprotobuf
speed-optimized)

25,452 112

protobuf-2.6.0
(libprotobuf-lite)

24,886 106 68,904 156

nanopb-0.3.1 996 0 7,104 8,200 0

Thrift thrift-0.9.2
(binary)

398 41,762 308 212 35,4044 444

thrift-0.9.2
(compact)

216 44,990 196

thrift-0.9.2
(debug)

2133 41,879 59,2445 525

thrift-0.9.2
(dense)

181 43,931 228 65,6846 526

thrift-0.9.2
(JSON)

776 34,577 204 85,6327 1907

Flatbuffers flatbuffers-v1.1.0-
70-g932b22f

728 7,430 4 132 0 0

Weave TLV Nest Labs8 422 1,252 0 124 8,000 0

Rev. 4 Copyright © 2020 Google LLC 21
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

CBOR QCBOR-06350ea
(global buffer)

321 1,195 384 124 9,320 0

QCBOR-06350ea
(heap buffer)

1,207 0 132

QCBOR-06350ea
(stack buffer)

1,191 0 508

tinycbor-ef28900
(global buffer)

305 2,618 384 204 8,0439 0

tinycbor-ef28900
(heap buffer)

2,638 0 204

tinycbor-ef28900
(stack buffer)

2,614 0 588

Table 4. Comparison of over-the-wire, data, and code sizes for various encoding representations and
products for sample test data.

1 The baseline mjson library does not make it programmatically convenient to generate JSON nor does
it include a Base64 encoder for byte streams. This size includes 1,555 bytes for a JSON builder class,
223 bytes for read-only JSON key strings, 292 bytes for a Base64 encoder, and 2,092 bytes for the
actual marshalling code.

2 Excludes json_helper.o.
3 Packed size. The non-packed size is 6,988 bytes.
4 Sized for: Thrift.o, Util.o, TMultiplexedProtocol.o, TTransportException.o, TTransportUtils.o, and

TBufferTransports.o.
5 Sized for: Thrift.o, Util.o, TDebugProtocol.o, TMultiplexedProtocol.o, TTransportException.o,

TTransportUtils.o, and TBufferTransports.o.
6 Sized for: Thrift.o, Util.o, TDenseProtocol.o, TMultiplexedProtocol.o, TTransportException.o,

TTransportUtils.o, and TBufferTransports.o.
7 Sized for: Thrift.o, Util.o, TJSONProtocol.o, TBase64Utils.o, TMultiplexedProtocol.o,

TTransportException.o, TTransportUtils.o, and TBufferTransports.o.
8 Version 2.0.
9 Sized for: cborencoder.o, cborencoder_close_container_checked.o, cborparser.o,

cborparser_dup_string.o.

All code was compiled using the following compiler:

● Freescale “Poky” 1.6 (arm-poky-linux-gnueabi-gcc 4.8.2)

with the following options:

● -march=armv7-a -mtune=cortex-a9 -mfpu=neon -mfloat-abi=hard -ftree-vectorize
-fno-forward-propagate -Os -g -Wall -Wchar-subscripts -Wformat -Wparentheses -Wreturn-type
-Wsequence-point -Wframe-larger-than=9472 -Wshadow -Wuninitialized -Wunused -Wno-psabi
-Werror -Wimplicit -Wmissing-prototypes -Wstrict-prototypes

Rev. 4 Copyright © 2020 Google LLC 22
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

JSON

This comparison used msjon-1.3 with the keys shown in Listing 8 below to generate the JSON
representation shown in Listing 9 below, derived from the native C/C++ data representation
from Listing 7 above. Byte streams were accommodated using Base64 encoded strings of the
data, as is typical for JSON representations.

const char * const kCapabilitiesKey = "capabilities";

const char * const kCapabilityTypeKey = "capType";

const char * const kDevicesKey = "devices";

const char * const kDeviceTypeKey = "deviceType";

const char * const kDirectoryKey = "directory";

const char * const kEnabledKey = "enabled";

const char * const kFabricKey = "fabric";

const char * const kGroupSecretKey = "groupSecret";

const char * const kIdentifierKey = "id";

const char * const kPropertyKeyKey = "kvKey";

const char * const kPropertyPairKey = "kvpair";

const char * const kPropertyValueKey = "kvValue";

const char * const kLastSeenTimeKey = "lastSeenTime";

const char * const kPasswordsKey = "password";

const char * const kPublicKeyKey = "publicKey";

const char * const kSerialNumberKey = "serialNumber";

const char * const kVendorIdentifierKey = "vendorId";

Listing 8. The JSON key strings used for the JSON representation of the test declaration for a sample
network directory data.

“directory” : {

“fabric” : {

“id” : “Fabric #1”,

“groupSecret” : “asdfqwerty”,

“password” : [

“password1”,

“password2”

]

},

“devices” : [

{

“vendorId” : 9050,

“deviceType” : 2,

“serialNumber” : “02AA01AB32120000”,

“publicKey” : “ua1/A58P8Wd5tzndk4iu6g==”,

“lastSeenTime” : 0,

“capabilities” : [

{

“capType” : 2,

“enabled” : true,

“kvpair” : {

“kvKey” : “key1”,

Rev. 4 Copyright © 2020 Google LLC 23
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

“kvValue” : “val1”

}

}

]

},

{

“vendorId” : 9050,

“deviceType” : 2,

“serialNumber” : “02AA01AB32120001”,

“publicKey” : “sD16B/KJ5TQjVdhOt9rscQ==”,

“lastSeenTime” : 0,

“capabilities” : [

{

“capType” : 1,

“enabled” : true,

“kvpair” : {

“kvKey” : “key2”,

“kvValue” : “val2”

}

}

]

},

{

“vendorId” : 9050,

“deviceType” : 2,

“serialNumber” : “02AA01AB32120002”,

“publicKey” : “iGx0J3tljvUdx9KwT4Ca/w==”,

“lastSeenTime” : 0,

“capabilities” : [

{

“capType” : 8,

“enabled” : true,

“kvpair” : {

“kvKey” : “key3”,

“kvValue” : “val3”

}

}

]

},

{

“vendorId” : 9050,

“deviceType” : 2,

“serialNumber” : “02AA01AB32120003”,

“publicKey” : “vRQGr53r5MBBvA74lvtpHg==”,

“lastSeenTime” : 0,

“capabilities” : [

{

“capType” : 2,

“enabled” : true,

“kvpair” : {

“kvKey” : “key4”,

“kvValue” : “val4”

}

Rev. 4 Copyright © 2020 Google LLC 24
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

}

]

}

]

}

Listing 9. An example JSON representation of the test declaration for a sample network directory data.

memcpy

This comparison simply evaluates the size of the native data representation show in Listing 7
above for the over-the-wire size because no translation is required to an over-the-wire format.
Consequently, the system resource costs to marshal and unmarshal the data, above and
beyond the memcpy function from the C Standard Library, are zero.

However, while this encoding offers the best format transformation costs, the over-the-wire
overhead is high when optional, repeating but otherwise empty fields are considered such as
the Capabilities array.

Google Protocol Buffers

The comparison of Google Protocol Buffers examines both the reference Google libprotobuf
implementation as well as the highly-tuned nanopb implementation.

libprotobuf

For the Google reference libprotobuf implementation, three code generation optimization
options were evaluated:

● size
● speed
● lite

using the description language definition shown in Listing 10.

enum CapType {

 Proximity = 1;

 Temperature = 2;

 SixLoWPAN = 3;

 WiFi = 4;

 Gateway = 5;

 Heat = 6;

 Cool = 7;

 Light = 8;

}

message KVPair {

 required string kvKey = 1;

Rev. 4 Copyright © 2020 Google LLC 25
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

 optional string kvValue = 2;

}

message Capability {

 required CapType capType = 1;

 required bool enabled = 2;

 required KVPair kvpair = 3;

}

message Device {

 required uint32 vendorId = 1;

 required uint32 deviceType = 2;

 required string serialNumber = 3;

 optional bytes publicKey = 4;

 optional uint32 lastSeenTime = 5;

 repeated Capability capabilities = 6;

}

message Fabric {

 required string id = 1;

 required bytes groupSecret = 2;

 repeated string password = 3;

}

message Directory {

 required Fabric fabric = 1;

 repeated Device device = 2;

}

Listing 10. An example Google Protocol Buffers representation of the test declaration for a sample
network directory data.

Size

option optimize_for = CODE_SIZE;

import "tlv-white-paper-protobuf-data.proto";

Listing 11. An example Google Protocol Buffers representation optimizing for code size.

Speed

option optimize_for = SPEED;

import "tlv-white-paper-protobuf-data.proto";

Listing 12. An example Google Protocol Buffers representation optimizing for code speed.

libprotobuf-lite

option optimize_for = LITE_RUNTIME;

Rev. 4 Copyright © 2020 Google LLC 26
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

import "tlv-white-paper-protobuf-data.proto";

Listing 13. An example Google Protocol Buffers representation optimizing for code size and the lite
runtime.

nanopb

The nanopb implementation of Google Protocol Buffers is 100% compatible with the
over-the-wire format of the reference implementation, but has code-generation that is optimized
far above and beyond even the reference libprotobuf-lite optimization. It uses the same
description language, but Listing 14 leverages the nanopb max_count and max_size
properties to reduce code size further by eliminating run time callbacks that would otherwise
compute the maximum length of arrays, strings, and byte streams.

import "nanopb.proto";

enum CapType {

 Proximity = 1;

 Temperature = 2;

 SixLoWPAN = 3;

 WiFi = 4;

 Gateway = 5;

 Heat = 6;

 Cool = 7;

 Light = 8;

}

message KVPair {

 required string kvKey = 1 [(nanopb).max_size = 11];

 optional string kvValue = 2 [(nanopb).max_size = 33];

}

message Capability {

 required CapType capType = 1;

 required bool enabled = 2;

 required KVPair kvpair = 3;

}

message Device {

 required uint32 vendorId = 1;

 required uint32 deviceType = 2;

 required string serialNumber = 3 [(nanopb).max_size = 32];

 optional bytes publicKey = 4 [(nanopb).max_size = 16];

 optional uint32 lastSeenTime = 5;

 repeated Capability capabilities = 6 [(nanopb).max_count = 32];

}

message Fabric {

 required string id = 1 [(nanopb).max_size = 41];

 required bytes groupSecret = 2 [(nanopb).max_size = 16];

Rev. 4 Copyright © 2020 Google LLC 27
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

repeated string password = 3 [(nanopb).max_count = 2,

(nanopb).max_size = 17];

}

message Directory {

 required Fabric fabric = 1;

 repeated Device device = 2 [(nanopb).max_count = 4];

}

Listing 14. An example Google Protocol Buffers representation for the nanopb implementation and code
generation plugin.

Thrift

The comparison of Apache Thrift examines the reference implementation and within that, five
different over-the-wire encoding formats:

● binary
● compact
● debug
● dense
● JSON

using the description language definition shown in Listing 15 below.

enum CapType {

 Proximity = 1;

 Temperature = 2;

 SixLoWPAN = 3;

 WiFi = 4;

 Gateway = 5;

 Heat = 6;

 Cool = 7;

 Light = 8;

}

struct KVPair {

 1: required string kvKey;

 2: optional string kvValue;

}

struct Capability {

 1: required CapType capType;

 2: required bool enabled;

 3: KVPair kvpair;

}

struct Device {

 1: required i32 vendorId;

 2: required i32 deviceType;

 3: required string serialNumber;

Rev. 4 Copyright © 2020 Google LLC 28
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

 4: optional binary publicKey;

 5: optional i32 lastSeenTime;

 6: list <Capability> capabilities;

}

struct Fabric {

 1: required string id;

 2: required binary groupSecret;

 3: list<string> password;

}

struct Directory {

 1: required Fabric fabric;

 2: list<Device> device;

}

Listing 15. An example Apache Thrift representation of the test declaration for a sample network
directory data.

Flatbuffers

The comparison with Flatbuffers uses the description language definition shown in Listing 16
below.

enum CapType : byte {

 Unknown = 0,

 Proximity = 1,

 Temperature = 2,

 SixLoWPAN = 3,

 WiFi = 4,

 Gateway = 5,

 Heat = 6,

 Cool = 7,

 Light = 8,

}

table KVPair {

 kvKey:string (required);

 kvValue:string;

}

table Capability {

 capType:CapType;

 enabled:bool;

 kvpair:KVPair (required);

}

table Device {

 vendorId:uint;

 deviceType:uint;

 serialNumber:string (required);

 publicKey:[ubyte];

Rev. 4 Copyright © 2020 Google LLC 29
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

 lastSeenTime:uint;

 capabilities:[Capability];

}

table Fabric {

 id:string (required);

 groupSecret:[ubyte] (required);

 password:[string] (required);

}

table Directory {

 fabric:Fabric (required);

 device:[Device];

}

Listing 15. An example Flatbuffers representation of the test declaration for a sample network directory
data.

Weave

The comparison with Weave uses the profile identifier and context tags specified shown in
Listing 17 below.

#define kTLVWhitePaper_Profile 0xFFFD0001

#define kTLVWhitePaper_Directory 1

#define kTLVWhitePaper_Fabric 2

#define kTLVWhitePaper_Fabric_Identifier 3

#define kTLVWhitePaper_Fabric_GroupSecret 4

#define kTLVWhitePaper_Fabric_Passwords 5

#define kTLVWhitePaper_Fabric_Password 6

#define kTLVWhitePaper_Devices 7

#define kTLVWhitePaper_Device 8

#define kTLVWhitePaper_Device_VendorID 9

#define kTLVWhitePaper_Device_DeviceType 10

#define kTLVWhitePaper_Device_SerialNumber 11

#define kTLVWhitePaper_Device_PublicKey 12

#define kTLVWhitePaper_Device_LastSeenTime 13

#define kTLVWhitePaper_Device_Capabilities 14

#define kTLVWhitePaper_Capability 15

#define kTLVWhitePaper_Capability_Type 16

#define kTLVWhitePaper_Capability_Enabled 17

#define kTLVWhitePaper_Capability_KVPair 18

#define kTLVWhitePaper_KVPair_Key 19

#define kTLVWhitePaper_KVPair_Value 20

Listing 17. The profile identifier and context tags used for a Weave representation of the test declaration
for a sample network directory data.

Rev. 4 Copyright © 2020 Google LLC 30
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

CBOR

The comparison with CBOR uses the tags specified shown in Listing 18 below.

#define kTLVWhitePaper_Directory 1

#define kTLVWhitePaper_Fabric 2

#define kTLVWhitePaper_Fabric_Identifier 3

#define kTLVWhitePaper_Fabric_GroupSecret 4

#define kTLVWhitePaper_Fabric_Passwords 5

#define kTLVWhitePaper_Fabric_Password 6

#define kTLVWhitePaper_Devices 7

#define kTLVWhitePaper_Device 8

#define kTLVWhitePaper_Device_VendorID 9

#define kTLVWhitePaper_Device_DeviceType 10

#define kTLVWhitePaper_Device_SerialNumber 11

#define kTLVWhitePaper_Device_PublicKey 12

#define kTLVWhitePaper_Device_LastSeenTime 13

#define kTLVWhitePaper_Device_Capabilities 14

#define kTLVWhitePaper_Capability 15

#define kTLVWhitePaper_Capability_Type 16

#define kTLVWhitePaper_Capability_Enabled 17

#define kTLVWhitePaper_Capability_KVPair 18

#define kTLVWhitePaper_KVPair_Key 19

#define kTLVWhitePaper_KVPair_Value 20

Listing 18. The tags used for a CBOR representation of the test declaration for a sample network
directory data.

Note that the CBOR implementation may be less than ideal relative to its JSON equivalent due
to the use of tags only for maps rather than tags plus integral keys (there is a fine distinction
there in CBOR, since tags are regarded as optional).

Consequently, the Over-the-wire Size size shown in Table 4 above for CBOR may be slightly
smaller than if a strict JSON-equivalent approach had been taken using integral keys. Examples
of this approach are shown in Listing 19 and Listing 20 for QCBOR and tinycbor, respectively.

// Group Secret

QCBOREncode_AddBytesToMapN(&lEncodeContext, kTLVWhitePaper_Fabric_GroupSecret,

(UsefulBufC){ &nl::Native::gDirectory.fabric.groupSecret[0], 16 });

// Passwords

{

 QCBOREncode_AddTag(&lEncodeContext, kTLVWhitePaper_Fabric_Passwords);

 QCBOREncode_OpenArray(&lEncodeContext);

 {

 QCBOREncode_AddSZString(&lEncodeContext,

&nl::Native::gDirectory.fabric.password[0][0]);

Rev. 4 Copyright © 2020 Google LLC 31
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

 QCBOREncode_AddSZString(&lEncodeContext,

&nl::Native::gDirectory.fabric.password[1][0]);

 }

 QCBOREncode_CloseArray(&lEncodeContext);

}

Listing 19. QCBOR CBOR encoding approach used for group secret and passwords sample data.

// Group Secret

lError = cbor_encode_tag(&lFabricEncodeContext,

kTLVWhitePaper_Fabric_GroupSecret);

TEST_ASSERT(lError == CborNoError);

lError = cbor_encode_byte_string(&lFabricEncodeContext,

&nl::Native::gDirectory.fabric.groupSecret[0], 16);

TEST_ASSERT(lError == CborNoError);

// Passwords

{

 CborEncoder lPasswordsEncodeContext;

 lError = cbor_encode_tag(&lFabricEncodeContext,

kTLVWhitePaper_Fabric_Passwords);

 TEST_ASSERT(lError == CborNoError);

 lError = cbor_encoder_create_array(&lFabricEncodeContext,

&lPasswordsEncodeContext, CborIndefiniteLength);

 TEST_ASSERT(lError == CborNoError);

 {

 lError = cbor_encode_text_stringz(&lPasswordsEncodeContext,

&nl::Native::gDirectory.fabric.password[0][0]);

 TEST_ASSERT(lError == CborNoError);

 lError = cbor_encode_text_stringz(&lPasswordsEncodeContext,

&nl::Native::gDirectory.fabric.password[1][0]);

 TEST_ASSERT(lError == CborNoError);

 }

 lError = cbor_encoder_close_container(&lFabricEncodeContext,

&lPasswordsEncodeContext);

 TEST_ASSERT(lError == CborNoError);

}

Listing 20. Tinycbor CBOR encoding approach used for group secret and passwords sample data.

Rev. 4 Copyright © 2020 Google LLC 32
2020-03-04 Google LLC Public Information

APPROVED / ACTIVE

References

1. Aimonen, Petteri. nanopb - protocol buffers with small code size.
http://koti.kapsi.fi/jpa/nanopb/.

2. Github. flatbuffers. https://google.github.io/flatbuffers/.
3. Google LLC. Protocol Buffers / API Reference / C++ Generated Code. 2014-09-03.
4. Google LLC. Weave Message Layer: Protocol Specification. Version 1.1.1. 2017-09-03.
5. Google LLC. Weave TLV Format. Revision 4. 2013-05-20.
6. IANA. Concise Binary Object Representation (CBOR) Tags. 2020-03-02.
7. Sourceforge. exip. http://exip.sourceforge.net/.
8. Sourceforge. mjson. http://mjson.sourceforge.net/.
9. Walkin, Lev. ASN.1 Exposed. http://lionet.info/asn1c/.

Rev. 4 Copyright © 2020 Google LLC 33
2020-03-04 Google LLC Public Information

http://koti.kapsi.fi/jpa/nanopb/
https://google.github.io/flatbuffers/
https://developers.google.com/protocol-buffers/docs/reference/cpp-generated
https://github.com/openweave/openweave-core/blob/master/doc/specs/protocol-specification-weave-message-layer.pdf
https://github.com/openweave/openweave-core/blob/master/doc/specs/weave-tlv-format.pdf
https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml
http://exip.sourceforge.net/
http://mjson.sourceforge.net/
http://mjson.sourceforge.net/
http://lionet.info/asn1c/

