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Summary 

This document describes the motivation, rationale, and competitive analysis that went into the             
creation and definition of the Nest Weave: Tag Length Value (TLV) data representation format.              
In the competitive analysis, comparisons are made against alternative representations such as            
JSON, Google Protocol Buffers, ASN.1, EXI, Apache Thrift, and CBOR along a number of              
evaluation criteria. 
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Introduction 

This document describes the motivation, rationale, and competitive analysis that went into the             
creation and definition of the Nest Weave: Tag Length Value (TLV) [5] data representation              
format . 1

Motivation and Rationale 

Target System Resources 

At its outset, Nest Weave was designed with the intent to bring rich, highly-secure,              
Internet-class IPv6 connectivity and applications to deeply-embedded devices within the home.           
The capabilities of such devices are measured in storage resources such as dynamic RAM in               
the 64 KiB to 128 KiB range and non-volatile flash in the 128 KiB to 512 KiB range and compute                    
resources of their 32-bit ARM Cortex M-class processors running at between 19 to 40 MHz. 

In addition to these constrained computing devices, Weave further considered constrained           
communications media beyond the world of Ethernet and WiFi and looked at the world of               
IPv6-capable low-power networks such as 6LoWPAN, an IPv6 adaptation over 802.15.4, where            
packet sizes are limited to 127 bytes and link data rates to 250 Kbps, both mere slivers of the                   
comparable metrics associated with Ethernet or WiFi. 

As a consequence of these constrained computing devices and communication media, size was             
and continues to be a dominant driving factor in the design of Weave and its constituent                
components. 

As the core components of Weave were being defined and as the definition for the basic                
protocol message format was considered, a conscious decision was made to split the design              
space into two: 

● Core Message Format 
● Application Data Representation 

Core Message Format 

The Weave Message Layer [4], while out of scope for this document, was made hand-tuned and                
highly-structured and -defined to ensure a consistent, compact representation and          
implementation that can support not only secure transport of arbitrary Weave message            
exchanges over either TCP or UDP but also application protocols within those exchanges that              
are either equally-structured and -defined or more flexibly-represented data along with a light to              
modest amount of structure and definition. 

1 Technically, this is actually Type Tag Length Value (TTLV); however, Type and Tag are packed into the                  
same field. 
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Application Data Representation 

With the definition of the Weave Message Format defined, the design efforts focused on the               
definition of an application data representation that could be used anywhere in Weave where a               
tight, hand-tuned, explicit data format and representation would be either too restrictive or too              
non-interoperable. 

Before striking out to implement something anew, Nest conducted a broad market survey,             
evaluating existing technologies against those criteria summarized in Table 1 and described            
briefly below. 

Requirements 

 

Requirement Weight 

Capable of Representing Basic Machine Types Heavy 

Capable of Representing Arrays Heavy 

Capable of Representing Structures Heavy 

Capable of Forward- and Backward Compatibility Heavy 

Capable of Representing Optional Content Heavy 

Partitioned and Controlled Tag Space Heavy 

System Neutrality Heavy 

Resource Overhead Heavy 

Trivial In-place Usage of Basic Machine Types Heavy 

Over-the-wire Compactness Moderate 

Lossless Translation to JSON Heavy 

Licensing and Seat Costs Moderate 

Market Penetration Light 

Proliferation and Quality of Infrastructure and Tools Light 

Table 1. Application data representation requirements and weighting. 

Capable of Representing Basic Machine Types 

This requirement gauges the native ability of the representation to symbolize basic machine             
types typically encountered in embedded system runtime environments such as C and C++.             
These types include: 

● Null 
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● Booleans 
● 8-, 16-, 32-, and 64-bit Signed and Unsigned Integers 
● 32- and 64-bit IEEE 754-1985 Floating Point Numbers 
● UTF-8 Character Streams 
● Byte Streams 

These plain-old-data (POD) basic types are the building blocks upon which all other aggregate              
data types are constructed. Runtime environments can, of course, be built to operate on              
abstract data representations; however, ultimately the resources required to do so is just             
additional system resource overhead to effect and operate on this abstraction. Consequently,            
representation of and efficient operation with these types is crucial. 

Capable of Representing Arrays 

This requirement gauges the native ability of the representation to represent a homogeneous             
array of another primitive or aggregate type, such as an array of UTF-8 character strings or                
signed integers. 

Capable of Representing Structures 

This requirement gauges the native ability of the representation to represent a heterogeneous             
collection of other primitive or aggregate types, such as might be needed to represent personal               
contact information consisting of a: 

● first name 
● last name 
● title 
● postal address 
● e-mail address 
● phone number 

Capable of Forward- and Backward-Compatibility 

This requirement gauges the ability of the representation to add new content and deprecate              
existing content in the future without invalidating the entirety of the application-level            
representation or protocol on the part of either the initiator or responder. 

The presence of this feature allows: 

● Old initiators to omit new content and have new responders cope by providing defaults. 
● New initiators to emit new content and have old responders cope by ignoring it. 

Capable of Representing Optional Content 

This requirement gauges the ability of the representation to indicate optional content which,             
whether present or absent, does not represent an error on the part of either the initiator or                 
responder. This is similar but not identical to support for backward- and forward-compatibility. 
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Partitioned and Controlled Tag Space 

This requirement gauges whether the representation has a tag space for marking and tagging              
data and whether, if present, that tag space may be partitioned and controlled in its entirety by                 
the Weave ecosystem and its participating partners. 

This is an important requirement since Nest, with Weave, explicitly endeavors to not only tightly               
manage a portion of the space but also to assign vendors their own tag space and to allow                  
vendors to extend that space as they see fit. 

System Neutrality 

This requirement gauges the ability of the representation to allow two systems with different              
processors, operating systems, and runtime environments to successfully exchange and          
interpret one another’s data. 

This is a hallmark of nearly all data presentations and is one of the chief motivating factors in                  
their creation and existence. 

Resource Overhead 

This requirement gauges the ability of the core implementation as well as the encoders and               
decoders to be efficiently represented in terms of read-only machine code as well as read-only               
and read/write RAM space. 

An ideal implementation would require little more than memcpy from the C Standard Library and               
processor-native memory load and store operations (e.g. store and load 8-, 16-, 32-, and 64-bit               
quantities). 

Appendix A: Size Analysis contains a detailed resource assessment of several competitive            
representation technologies. 

Trivial In-place Access of Basic Machine Types 

This requirement gauges the ability of the representation to handle encoding and decoding of              
the aforementioned basic machine types through the use of memcpy from the C Standard              
Library or processor-native memory load and store operations, potentially along with byte            
swapping operations. 
 
Representations that excel here largely facilitate in-place operation on over-the-wire data which            
impacts system memory requirements. 
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Over-the-wire Compactness 

This requirement gauges the efficiency of the representation in encoding a given set of native               
machine data into the least number of bytes. 

Achieving low- or high-degrees of over-the-wire compactness comes with trade-offs against           
both the Resource Overhead and Trivial In-place Access of Basic Machine Types requirements             
by increasing the amount of encoding and decoding that must take place before the represented               
data can be either remotely-transmitted or locally-manipulated. 

Lossless Translation to JSON 

This requirement gauges the ability of the representation to trivially and mechanically map to              
and from a JSON-based representation without data loss and without application- and            
content-specific knowledge. 

JSON is the effective lingua franca of the RESTful APIs of the modern Internet and is the core                  
backbone of much of the cloud server infrastructure behind those APIs. As a consequence, a               
representation that can trivially and losslessly map to and from JSON presents an opportunity to               
achieve maximum leverage of that infrastructure while still meeting the constraints of the Weave              
ecosystem. 

Licensing and Seat Costs 

This requirement gauges the capital and operational expense of acquiring and supporting a             
particular implementation for a representation. 

Market Penetration 

This requirement gauges the scope of adoption of the representation in the overall marketplace.              
Broad market penetration will have a tendency to imply a broad number of implementations,              
tools, development resources, support resources, and other resources. 

Proliferation and Quality of Infrastructure and Tools 

This requirement is a subset of the Market Penetration requirement and specifically gauges the              
proliferation and quality of infrastructure and tools available to support the development, testing,             
integration, and support of the data representation. Broad infrastructure and tools availability            
potentially makes an easier entry point for ecosystem developers and lowers development and             
support costs for ecosystem device vendors. 

Competitive Analysis 

Using the requirements outlined above, we analyzed the following data representations for use             
in Weave: 
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● JSON 
● memcpy 
● Google Protocol Buffers 
● ASN.1 
● EXI 
● Thrift 
● CBOR 

before coming up the design and implementation that is Weave TLV. 

Summary 

Criteria 

Representation 

JSON memcpy 
Google 
Protocol 
Buffers 

ASN.1 EXI Thrift CBOR Weave 
TLV 

Capable 
of 
Represen
ting Basic 
Machine 
Types 

Partial Yes Yes Partial Partial Partial Yes Yes 

Capable 
of 
Represen
ting 
Arrays 

Yes Yes Yes Yes Yes Yes Yes Yes 

Capable 
of 
Represen
ting 
Structures 

Yes Yes Yes Yes Yes Yes Yes Yes 

Capable 
for 
Forward- 
and 
Backward
-Compati
bility 

Yes No Yes Yes Yes Yes Yes Yes 

Capable 
of 
Represen
ting 
Optional 
Content 

Yes No Yes Yes Yes Yes Yes Yes 

Partitione
d and 
Controlled 
Tag 

Maybe No Partial Yes No Yes Partial Yes 
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Space 

System 
Neutrality High Low High High High High High High 

Resource 
Overhead High Low Variable  2 High High High Moderate Moderate 

Trivial 
In-place 
Access of 
Basic 
Machine 
Types 

No Yes Partial No No No Partial Yes 

Over-the-
wire 
Compactn
ess 

Low Low Moderate Variable  3 Low Variable  4 Moderate Moderate 

Lossless 
Translatio
n to 
JSON 

Yes No Mostly No No Mostly Mostly Mostly 

Licensing 
and Seat 
Costs 

Low Low Low High Low Low Low Low 

Market 
Penetratio
n 

High High Moderate Moderate Low Moderate Low Low 

Proliferati
on and 
Quality of 
Infrastruct
ure and 
Tools 

High High Moderate High Low Moderate Moderate Low 

Table 2. Summary of data representations. 

JSON 

JSON, while the lingua franca of the RESTful modern Internet, simply has an over-the-wire              
representation that is too large and system resource overhead that is too great given the               
required encoding and decoding to move from the representation to native data types. 

Consequently, while it works great for backend server infrastructure and can work well with              
cellphone-class embedded systems, its advantages decay when pushed into the deeply           
embedded world of devices Weave endeavors to address. 

2 Resource overhead varies from moderate to high depending on whether the Google reference              
implementation libprotobuf or the alternate nanopb is used. 
3 Supports a variety of encoding types that range from low to high in over-the-wire compactness. 
4 Supports a variety of encoding types that range from low to high in over-the-wire compactness. 
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JSON, therefore, fails on the following requirements: 

● Resource Overhead 
● Trivial In-place Access of Basic Machine Types 
● Over-the-wire Compactness 

memcpy 

This representation is a proxy for all bespoke, hand-tuned data representations, including those             
that simply agree on a byte order and then effectively byte-swap and memcpy types into and out                 
of network buffers, potentially with some shifting and masking. 

This representation has compelling attributes across the board but fails the following            
requirements: 

● Capable of Forward- and Backward-Compatibility 
● Representation of Optional Content 
● Partitioned and Controlled Tag Space 
● Lossless Translation to JSON 

That said, this stood and still stands as a benchmark representation. 

Google Protocol Buffers 

Google Protocol Buffers (protobufs) was originally developed as a Google-internal          
representation and remote procedure call (RPC) mechanism emphasizing simplicity and          
performance, attempting to best XML and one other representation considered here, ASN.1.  
 
Through its efforts to open source the implementation, protobufs have received broader            
marketplace adoption outside of Google. 
 
However, protobufs optimized for a different design center on a number of different fronts. Chief               
among them was in the area of low resource overhead. 
 
The Google reference implementation includes two C/C++ codecs, libprotobuf and          
libprotobuf-lite. However, the recommended application space for even libprotobuf-lite, “more          
appropriate for resource-constrained systems such as mobile phones” [3], is dramatically out of             
scope relative to what Weave considers to be a resource-constrained device. 

In addition, Google has carved out a chunk of the usable tag space for Protocol Buffers, making                 
adopting into the Weave ecosystem difficult. 

Ultimately, Google Protocol Buffers did not meet the following requirements: 

● Partitioned and Controlled Tag Space 
● Resource Overhead 
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● Trivial In-place Access of Basic Machine Types 

Trivial In-place Access of Basic Machine Types 

With respect to trivial in-place access of basic machine types, protobufs, like thrift, focuses on               
arm’s length programmer interaction and high-compression, yet high-overhead, “zig-zag”         
encoding for integer data, which results in and represents an effective double-buffer that             
increases stack or global data overhead, depending on reentrancy needs of the application.             
This is shown in Figure 1 below. 

 
Figure 1. Illustration of Weave TLV versus Google Protocol Buffers approach to encoding. 

ASN.1 

Borne out of computing and telecommunications standardization efforts in the mid-1980s,           
ASN.1 defines a notation for data representation with a suite of defined encoding rules,              
encoding the notation into representations such as XML (XER) or tightly-packed binary (PER).  

Due to its early standardization, ASN.1 has been broadly adopted; however, primarily in the              
legacy Internet in protocols such as LDAP or SNMP where representations such as JSON or               
XML have become ascendant. 

ASN.1 has nearly infinite flexibility; however, this comes with trade-offs that made it unsuitable              
for Weave. 

Ultimately, ASN.1 failed to meet the following requirements: 

● Capable of Representing Basic Machine Types 
● Resource Overhead 
● Trivial In-place Access of Basic Machine Types 
● Over-the-wire Compactness 
● Lossless Translation to JSON 
● Licensing and Seat Costs 
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In terms of Licensing and Seat Costs, while ASN.1 is a fairly open standard, in our                
implementation survey, we were unable to find any high-performance, well-supported,          
open-source implementations. 

EXI 

The Extensible XML Interchange (EXI) representation was borne out of the many efforts to              
make the storage and transmission of the Extensible Markup Language (XML) representation            
more space-efficient. 

It has traditionally and most-commonly been paired with the Constrained Application Protocol            
(CoAP) as well as with HTTPS in the context of the ZigBee Smart Energy Profile (SEP) 2.0. 

Unfortunately, because of the nearly-infinite inherent expressiveness of XML and the           
highly-compact binary encoding, EXI failed on the following fronts: 

● Resource Overhead 
● Trivial In-place Access of Basic Machine Types 
● Partitioned and Controlled Tag Space 
● Over-the-wire Compactness 
● Lossless Translation to JSON 
● Market Penetration 
● Proliferation and Quality of Infrastructure and Tools 

That the CoAP effort has all but abandoned EXI (as the preferred CoAP application layer               
encoding) in favor of CBOR is an implicit confirmation of the lack of suitability of EXI for the                  
Weave ecosystem. 

Other 

The following technologies were not initially surveyed when the initial analysis was done around              
the creation of Weave TLV, either due to similarity with a technology already under evaluation or                
a creation date that came after Weave TLV. 

Thrift 

Thrift has many similarities to Google Protocol Buffers and has achieved, through its adoption at               
Facebook, similar if not broader levels of marketplace penetration. 

However, in addition, Thrift adds built-in mechanisms for both performing and managing RPC,             
something explicitly out of scope for Weave. Consequently, Thrift was not analyzed in depth,              
failing the following requirements: 

● Capable of Representing Basic Machine Types 
● Partitioned and Controlled Tag Space 
● Resource Overhead 
● Trivial In-place Access of Basic Machine Types 
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CBOR 

The Concise Binary Object Representation (CBOR) IETF draft was submitted the same month             
that the Weave TLV implementation was completed and, as a consequence, was unavailable             
for competitive evaluation at that time. 

CBOR is intended to go hand-in-hand with the Constrained Application Protocol (CoAP) and to              
displace EXI as the preferred data representation for CoAP, addressing EXI’s many            
shortcomings. 

Relative to Weave TLV, CBOR has many of the same design motivations and requirements              
and, in its realized design, many of the same attributes. However, CBOR is at the same time, far                  
looser by allowing any other CBOR type—including an array or structure—to act as a tag or key,                 
thereby eliminating in its full implementation Lossless Translation to JSON and greatly            
increasing the complexity of its implementation at full specification. 

From a market adoption perspective, CBOR offers a wealth of liberally-licensed open source             
implementations in C and C++, among other languages, including those listed in Table 3 below. 

Project Language Build License Maintainer Active Project? 

tinycbor C make MIT Intel Y 

QCBOR C make BSD 3-Clause Laurence Lundblade Y 

jsoncons C++ cmake Boost Software License v1 Daniel Parker Y 

cbor-lite C++ cmake Public Domain Kurt Zeilenga Y 

libcbor C cmake MIT Pavel Kalvoda Y 

cborg C++ - Apache v2 ARM N 

cppbor C++ cmake BSD 2-Clause David Preece N 

cbor-cpp C++ cmake Apache v2 Stanislav Ovsiannikov N 

cn-cbor C cmake MIT Carsten Bormann N 

scsp C/C++ make Apache v2 
MIT 

Vitaly Shukela N 

Table 3. Survey of open source CBOR C or C++ implementations. 

Relative to Weave TLV, the downsides of CBOR are: 

● Partitioned and Controlled Tag Space 
● Trivial In-place Access of Basic Machine Types 
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Partitioned and Controlled Tag Space 

As documented in “Concise Binary Object Representation (CBOR) Tags” [6], the tag space for              
CBOR is partitioned into 8-bits of either standards action or specification required reserved             
space and the remaining 56-bits as first-come, first-served. This effectively makes tags in CBOR              
ecosystem-specific and means that across ecosystems, data in flight or at rest encoded with              
CBOR may collide, at worst, or be ambiguously tagged, at best. 

To avoid or overcome either of these situations, CBOR encoded data would need to be further                
qualified or wrapped, increasing the complexity and size of the encoded data. 

Trivial In-place Access of Basic Machine Types 

CBOR falls somewhere between encoding and serialization formats such as Protocol Buffers or             
Thrift and formats such as Weave TLV. Where some types, and sizes of those types, can                
support trivial in-place access and others use more complicated encoding schemes that            
preclude such access. For data patterns that bias towards the latter, those applications will see               
an increase in code size due to the implementation complexity necessary to encode and decode               
such data. 

Flatbuffers 

Flatbuffers is a cross-platform serialization library developed by Google, as an alternative to             
protobufs, optimized for game development and other performance-sensitive applications.         
Emphasis is placed on the following criteria, many of which are very similar to Weave TLV: 

● Trivial In-place Access of Basic Machine Types 
● Capable for Forward- and Backward-Compatibility 
● Capable of Representing Optional Content 
● Low Resource Overhead 

Flatbuffers, across most quantitative comparison criteria, is close to Weave. However, it loses             
out because of the overhead of the Flatbuffer vtable which, while offering fast access to arbitrary                
elements of the buffer, increases over-the-wire size. 

In addition, Flatbuffers has dependencies on both C++ STL and the C++11 standard, which              
increase the platform requirements relative to Weave. 

Conclusion 

In the rich world of historical and current competitive technologies in the realm of              
platform-independent data presentation and exchange, Weave TLV provides a solid balance of            
attributes. These attributes make it well-suited to provide a long-lasting, evolving foundation for             
deeply-embedded, Internet-connected devices from multiple parties. At the same time, easy and            
seamless translation to JSON make it an ideal data representation vehicle to match the needs               
of Internet-enabled services today. 
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Appendix A: Size Analysis 

To exercise and quantify not only the feature capabilities of each representation but also the               
efficiency of various data representation implementations, we decided to create a test case. 

The test case is based on a C/C++ native struct, shown in Listings 1 through 7 below. From                  
there, a data representation was made in each technology and the over-the-wire size measured              
as well as the size of the resulting code and data necessary to marshal the native struct into the                   
representation. The summary of these sizes is shown in Table 4 below. In the table, Core                
represents the size contributions, if any, of the core library supporting the representation,             
common to any application use case. Application represents the size contributions for encoding             
the particular use cases exemplified in this document. 

enum CapType { 

Proximity = 1, 

Temperature = 2, 

SixLoWPAN = 3, 

WiFi = 4, 

Gateway = 5, 

Heat = 6, 

Cool = 7, 

Light = 8 

}; 

Listing 1. Native C language test definition for a capability type enumeration. 

struct KVPair { 

char kvKey[11]; 

char kvValue[33]; 

}; 

Listing 2. Native C language test definition for a key/value pair. 

struct Capability { 

CapType capType; 

bool enabled; 

KVPair kvpair; 

}; 

Listing 3. Native C language test definition for a capability. 

struct Device { 

uint16_t vendorId; 

uint16_t deviceType; 

uint8_t serialNumberLength; 

char serialNumber[32]; 

uint8_t publicKey[16]; 

uint32_t lastSeenTime; 

Capability capabilities[32]; 
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}; 

Listing 4. Native C language test definition for a network device. 

struct Fabric { 

char id[41]; 

uint8_t groupSecret[16]; 

char password[2][17]; 

}; 

Listing 5. Native C language test definition for a network fabric. 

struct Directory { 

Fabric fabric; 

Device device[4]; 

}; 

Listing 6. Native C language test definition for a network directory. 

static const struct Directory sDirectory = { 

// Fabric 

{ 

“Fabric #1”, 

 { ‘a’, ‘s’, ‘d’, ‘f’, ‘q’, ‘w’, ‘e’, ‘r’, ‘t’, ‘y’ }, 

 { 

“password1”, 

“password2” 

}, 

}, 

// Devices 

{ 

// Device 0 

{  

0x235A, 

0x0002, 

16, 

{ 

‘0’, ‘2’, ‘A’, ‘A’, ‘0’, ‘1’, ‘A’, ‘B’, 

‘3’, ‘2’, ‘1’, ‘2’, ‘0’, ‘0’, ‘0’, ‘0’ 

}, 

{ 

0xb9, 0xad, 0x7f, 0x03, 

0x9f, 0x0f, 0xf1, 0x67, 

0x79, 0xb7, 0x39, 0xdd, 

0x93, 0x88, 0xae, 0xea 

}, 

0x0, 

{ 

{ Temperature, true, { “key1”, “val1” } }, 

{ } 

} 

}, 

// Device 1 
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{  

0x235A, 

0x0002, 

16, 

{ 

‘0’, ‘2’, ‘A’, ‘A’, ‘0’, ‘1’, ‘A’, ‘B’, 

‘3’, ‘2’, ‘1’, ‘2’, ‘0’, ‘0’, ‘0’, ‘1’ 

}, 

{ 

0xb0, 0x3d, 0x7a, 0x07, 

0xf2, 0x89, 0xe5, 0x34, 

0x23, 0x55, 0xd8, 0x4e, 

0xb7, 0xda, 0xec, 0x71 

}, 

0x0, 

{ 

{ Proximity, true, { “key2”, “val2” } }, 

{ } 

} 

}, 

// Device 2 

{  

0x235A, 

0x0002, 

16, 

{ 

‘0’, ‘2’, ‘A’, ‘A’, ‘0’, ‘1’, ‘A’, ‘B’, 

‘3’, ‘2’, ‘1’, ‘2’, ‘0’, ‘0’, ‘0’, ‘2’ 

}, 

{ 

0x88, 0x6c, 0x74, 0x27, 

0x7b, 0x65, 0x8e, 0xf5, 

0x1d, 0xc7, 0xd2, 0xb0, 

0x4f, 0x80, 0x9a, 0xff 

}, 

0x0, 

{ 

{ Light, true, { “key3”, “val3” } }, 

{ } 

} 

}, 

// Device 3 

{  

0x235A, 

0x0002, 

16, 

{ 

‘0’, ‘2’, ‘A’, ‘A’, ‘0’, ‘1’, ‘A’, ‘B’, 

‘3’, ‘2’, ‘1’, ‘2’, ‘0’, ‘0’, ‘0’, ‘3’ 

}, 

{ 

0xbd, 0x14, 0x06, 0xaf, 

0x9d, 0xeb, 0xe4, 0xc0, 
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0x41, 0xbc, 0x0e, 0xf8, 

0x96, 0xfb, 0x69, 0x1e 

}, 

0x0, 

{ 

{ Temperature, true, { “key4”, “val4” } }, 

{ } 

} 

}, 

} 

}; 

Listing 7. Native C language test declaration for a sample network directory data. 

Represent
ation 

Product Over-the-
wire Size 

/ B 

Application Core 

Serialization 
Code Size / B 

Serialization 
Data Size / B 

Stack 
Data Size / 

B 

Code 
Size / B 

Data 
Size / B 

JSON mjson-1.3 965 4,1621 0 28 22,6202 0 

memcpy - 6,5913 0 0 0 0 0 

Google 
Protocol 
Buffers 

protobuf-2.6.0 
(libprotobuf 
size-optimized) 

313 25,448 112 60 632,040 857 

protobuf-2.6.0 
(libprotobuf 
speed-optimized) 

25,452 112 

protobuf-2.6.0 
(libprotobuf-lite) 

24,886 106 68,904 156 

nanopb-0.3.1 996 0 7,104 8,200 0 

Thrift thrift-0.9.2 
(binary) 

398 41,762 308 212 35,4044 444 

thrift-0.9.2 
(compact) 

216 44,990 196 

thrift-0.9.2 
(debug) 

2133 41,879 59,2445 525 

thrift-0.9.2 
(dense) 

181 43,931 228 65,6846 526 

thrift-0.9.2 
(JSON) 

776 34,577 204 85,6327 1907 

Flatbuffers flatbuffers-v1.1.0-
70-g932b22f 

728 7,430 4 132 0 0 

Weave TLV Nest Labs8 422 1,252 0 124 8,000 0 

Rev. 4 Copyright © 2020 Google LLC 21 
2020-03-04 Google LLC Public Information 



APPROVED / ACTIVE 

CBOR QCBOR-06350ea 
(global buffer) 

321 1,195 384 124 9,320 0 

QCBOR-06350ea 
(heap buffer) 

1,207 0 132 

QCBOR-06350ea 
(stack buffer) 

1,191 0 508 

tinycbor-ef28900 
(global buffer) 

305 2,618 384 204 8,0439 0 

tinycbor-ef28900 
(heap buffer) 

2,638 0 204 

tinycbor-ef28900 
(stack buffer) 

2,614 0 588 

Table 4. Comparison of over-the-wire, data, and code sizes for various encoding representations and 
products for sample test data. 

1 The baseline mjson library does not make it programmatically convenient to generate JSON nor does 
it include a Base64 encoder for byte streams. This size includes 1,555 bytes for a JSON builder class, 
223 bytes for read-only JSON key strings, 292 bytes for a Base64 encoder, and 2,092 bytes for the 
actual marshalling code. 

2 Excludes json_helper.o. 
3 Packed size. The non-packed size is 6,988 bytes. 
4 Sized for: Thrift.o, Util.o, TMultiplexedProtocol.o, TTransportException.o, TTransportUtils.o,  and 

TBufferTransports.o. 
5 Sized for: Thrift.o, Util.o, TDebugProtocol.o, TMultiplexedProtocol.o, TTransportException.o, 

TTransportUtils.o,  and TBufferTransports.o. 
6 Sized for: Thrift.o, Util.o, TDenseProtocol.o, TMultiplexedProtocol.o, TTransportException.o, 

TTransportUtils.o,  and TBufferTransports.o. 
7 Sized for: Thrift.o, Util.o, TJSONProtocol.o, TBase64Utils.o, TMultiplexedProtocol.o, 

TTransportException.o, TTransportUtils.o,  and TBufferTransports.o. 
8 Version 2.0. 
9 Sized for: cborencoder.o, cborencoder_close_container_checked.o, cborparser.o, 

cborparser_dup_string.o. 

All code was compiled using the following compiler: 

● Freescale “Poky” 1.6 (arm-poky-linux-gnueabi-gcc 4.8.2) 

with the following options: 

● -march=armv7-a -mtune=cortex-a9 -mfpu=neon -mfloat-abi=hard -ftree-vectorize 
-fno-forward-propagate -Os -g  -Wall -Wchar-subscripts -Wformat -Wparentheses -Wreturn-type 
-Wsequence-point -Wframe-larger-than=9472 -Wshadow -Wuninitialized -Wunused -Wno-psabi 
-Werror  -Wimplicit -Wmissing-prototypes -Wstrict-prototypes 
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JSON 

This comparison used msjon-1.3 with the keys shown in Listing 8 below to generate the JSON                
representation shown in Listing 9 below, derived from the native C/C++ data representation             
from Listing 7 above. Byte streams were accommodated using Base64 encoded strings of the              
data, as is typical for JSON representations. 

const char * const kCapabilitiesKey = "capabilities"; 

const char * const kCapabilityTypeKey = "capType"; 

const char * const kDevicesKey = "devices"; 

const char * const kDeviceTypeKey = "deviceType"; 

const char * const kDirectoryKey = "directory"; 

const char * const kEnabledKey = "enabled"; 

const char * const kFabricKey = "fabric"; 

const char * const kGroupSecretKey = "groupSecret"; 

const char * const kIdentifierKey = "id"; 

const char * const kPropertyKeyKey = "kvKey"; 

const char * const kPropertyPairKey = "kvpair"; 

const char * const kPropertyValueKey = "kvValue"; 

const char * const kLastSeenTimeKey = "lastSeenTime"; 

const char * const kPasswordsKey = "password"; 

const char * const kPublicKeyKey = "publicKey"; 

const char * const kSerialNumberKey = "serialNumber"; 

const char * const kVendorIdentifierKey = "vendorId"; 

Listing 8. The JSON key strings used for the JSON representation of the test declaration for a sample 
network directory data. 

“directory” : { 

“fabric” : { 

“id” : “Fabric #1”, 

“groupSecret” : “asdfqwerty”, 

“password” : [ 

“password1”, 

“password2” 

] 

}, 

“devices” : [ 

{ 

“vendorId” : 9050, 

“deviceType” : 2, 

“serialNumber” : “02AA01AB32120000”, 

“publicKey” : “ua1/A58P8Wd5tzndk4iu6g==”, 

“lastSeenTime” : 0, 

“capabilities” : [ 

{ 

“capType” : 2, 

“enabled” : true, 

“kvpair” : { 

“kvKey” : “key1”, 
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“kvValue” : “val1” 

} 

} 

] 

}, 

{ 

“vendorId” : 9050, 

“deviceType” : 2, 

“serialNumber” : “02AA01AB32120001”, 

“publicKey” : “sD16B/KJ5TQjVdhOt9rscQ==”, 

“lastSeenTime” : 0, 

“capabilities” : [ 

{ 

“capType” : 1, 

“enabled” : true, 

“kvpair” : { 

“kvKey” : “key2”, 

“kvValue” : “val2” 

} 

} 

] 

}, 

{ 

“vendorId” : 9050, 

“deviceType” : 2, 

“serialNumber” : “02AA01AB32120002”, 

“publicKey” : “iGx0J3tljvUdx9KwT4Ca/w==”, 

“lastSeenTime” : 0, 

“capabilities” : [ 

{ 

“capType” : 8, 

“enabled” : true, 

“kvpair” : { 

“kvKey” : “key3”, 

“kvValue” : “val3” 

} 

} 

] 

}, 

{ 

“vendorId” : 9050, 

“deviceType” : 2, 

“serialNumber” : “02AA01AB32120003”, 

“publicKey” : “vRQGr53r5MBBvA74lvtpHg==”, 

“lastSeenTime” : 0, 

“capabilities” : [ 

{ 

“capType” : 2, 

“enabled” : true, 

“kvpair” : { 

“kvKey” : “key4”, 

“kvValue” : “val4” 

} 
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} 

] 

} 

] 

} 

Listing 9. An example JSON representation of the test declaration for a sample network directory data. 

memcpy 

This comparison simply evaluates the size of the native data representation show in Listing 7               
above for the over-the-wire size because no translation is required to an over-the-wire format.              
Consequently, the system resource costs to marshal and unmarshal the data, above and             
beyond the memcpy  function from the C Standard Library, are zero. 

However, while this encoding offers the best format transformation costs, the over-the-wire            
overhead is high when optional, repeating but otherwise empty fields are considered such as              
the Capabilities  array. 

Google Protocol Buffers 

The comparison of Google Protocol Buffers examines both the reference Google libprotobuf            
implementation as well as the highly-tuned nanopb implementation. 

libprotobuf 

For the Google reference libprotobuf implementation, three code generation optimization          
options were evaluated: 

● size 
● speed 
● lite 

using the description language definition shown in Listing 10. 

 

enum CapType { 

    Proximity = 1; 

    Temperature = 2; 

    SixLoWPAN = 3; 

    WiFi = 4; 

    Gateway = 5; 

    Heat = 6; 

    Cool = 7; 

    Light = 8; 

} 

 

message KVPair { 

    required string kvKey = 1; 
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    optional string kvValue = 2; 

} 

 

message Capability { 

    required CapType capType = 1; 

    required bool enabled = 2; 

    required KVPair kvpair = 3; 

} 

 

message Device { 

    required uint32 vendorId = 1; 

    required uint32 deviceType = 2; 

    required string serialNumber = 3; 

    optional bytes publicKey = 4; 

    optional uint32 lastSeenTime = 5; 

    repeated Capability capabilities = 6; 

} 

 

message Fabric { 

    required string id = 1; 

    required bytes groupSecret = 2; 

    repeated string password = 3; 

} 

 

message Directory { 

    required Fabric fabric = 1; 

    repeated Device device = 2; 

} 

Listing 10. An example Google Protocol Buffers representation of the test declaration for a sample 
network directory data. 

Size 

option optimize_for = CODE_SIZE; 

 

import "tlv-white-paper-protobuf-data.proto"; 

Listing 11. An example Google Protocol Buffers representation optimizing for code size. 

Speed 

option optimize_for = SPEED; 

 

import "tlv-white-paper-protobuf-data.proto"; 

Listing 12. An example Google Protocol Buffers representation optimizing for code speed. 

libprotobuf-lite 

option optimize_for = LITE_RUNTIME; 
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import "tlv-white-paper-protobuf-data.proto"; 

Listing 13. An example Google Protocol Buffers representation optimizing for code size and the lite 
runtime. 

nanopb 

The nanopb implementation of Google Protocol Buffers is 100% compatible with the            
over-the-wire format of the reference implementation, but has code-generation that is optimized            
far above and beyond even the reference libprotobuf-lite optimization. It uses the same             
description language, but Listing 14 leverages the nanopb max_count and max_size           
properties to reduce code size further by eliminating run time callbacks that would otherwise              
compute the maximum length of arrays, strings, and byte streams. 

import "nanopb.proto"; 

 

enum CapType { 

    Proximity = 1; 

    Temperature = 2; 

    SixLoWPAN = 3; 

    WiFi = 4; 

    Gateway = 5; 

    Heat = 6; 

    Cool = 7; 

    Light = 8; 

} 

 

message KVPair { 

    required string kvKey = 1 [(nanopb).max_size = 11]; 

    optional string kvValue = 2 [(nanopb).max_size = 33]; 

} 

 

message Capability { 

    required CapType capType = 1; 

    required bool enabled = 2; 

    required KVPair kvpair = 3; 

} 

 

message Device { 

    required uint32 vendorId = 1; 

    required uint32 deviceType = 2; 

    required string serialNumber = 3 [(nanopb).max_size = 32]; 

    optional bytes publicKey = 4 [(nanopb).max_size = 16]; 

    optional uint32 lastSeenTime = 5; 

    repeated Capability capabilities = 6 [(nanopb).max_count = 32]; 

} 

 

message Fabric { 

    required string id = 1 [(nanopb).max_size = 41]; 

    required bytes groupSecret = 2 [(nanopb).max_size = 16]; 
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repeated string password = 3 [(nanopb).max_count = 2,         

(nanopb).max_size = 17]; 

} 

 

message Directory { 

    required Fabric fabric = 1; 

    repeated Device device = 2 [(nanopb).max_count = 4]; 

} 

Listing 14. An example Google Protocol Buffers representation for the nanopb implementation and code 
generation plugin. 

Thrift 

The comparison of Apache Thrift examines the reference implementation and within that, five             
different over-the-wire encoding formats: 

● binary 
● compact 
● debug 
● dense 
● JSON 

using the description language definition shown in Listing 15 below. 

enum CapType { 

    Proximity = 1; 

    Temperature = 2; 

    SixLoWPAN = 3; 

    WiFi = 4; 

    Gateway = 5; 

    Heat = 6; 

    Cool = 7; 

    Light = 8; 

} 

 

struct KVPair { 

    1: required string kvKey; 

    2: optional string kvValue; 

} 

 

struct Capability { 

    1: required CapType capType; 

    2: required bool enabled; 

    3: KVPair kvpair; 

} 

 

struct Device { 

    1: required i32 vendorId; 

    2: required i32 deviceType; 

    3: required string serialNumber; 
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    4: optional binary publicKey; 

    5: optional i32 lastSeenTime; 

    6: list <Capability> capabilities; 

} 

 

struct Fabric { 

    1: required string id; 

    2: required binary groupSecret; 

    3: list<string> password; 

} 

 

struct Directory { 

    1: required Fabric fabric; 

    2: list<Device> device; 

} 

Listing 15. An example Apache Thrift representation of the test declaration for a sample network 
directory data. 

Flatbuffers 

The comparison with Flatbuffers uses the description language definition shown in Listing 16             
below. 

enum CapType : byte { 

    Unknown = 0, 

    Proximity = 1, 

    Temperature = 2, 

    SixLoWPAN = 3, 

    WiFi = 4, 

    Gateway = 5, 

    Heat = 6, 

    Cool = 7, 

    Light = 8, 

} 

 

table KVPair { 

    kvKey:string (required); 

    kvValue:string; 

} 

 

table Capability { 

    capType:CapType; 

    enabled:bool; 

    kvpair:KVPair (required); 

} 

 

table Device { 

    vendorId:uint; 

    deviceType:uint; 

    serialNumber:string (required); 

    publicKey:[ubyte]; 
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    lastSeenTime:uint; 

    capabilities:[Capability]; 

} 

 

table Fabric { 

    id:string (required); 

    groupSecret:[ubyte] (required); 

    password:[string] (required); 

} 

 

table Directory { 

    fabric:Fabric (required); 

    device:[Device]; 

} 

Listing 15. An example Flatbuffers representation of the test declaration for a sample network directory 
data. 

Weave 

The comparison with Weave uses the profile identifier and context tags specified shown in              
Listing 17 below. 

#define kTLVWhitePaper_Profile                   0xFFFD0001 

 

#define kTLVWhitePaper_Directory                 1 

#define kTLVWhitePaper_Fabric                    2 

#define kTLVWhitePaper_Fabric_Identifier         3 

#define kTLVWhitePaper_Fabric_GroupSecret        4 

#define kTLVWhitePaper_Fabric_Passwords          5 

#define kTLVWhitePaper_Fabric_Password           6 

#define kTLVWhitePaper_Devices                   7 

#define kTLVWhitePaper_Device                    8 

#define kTLVWhitePaper_Device_VendorID           9 

#define kTLVWhitePaper_Device_DeviceType        10 

#define kTLVWhitePaper_Device_SerialNumber      11 

#define kTLVWhitePaper_Device_PublicKey         12 

#define kTLVWhitePaper_Device_LastSeenTime      13 

#define kTLVWhitePaper_Device_Capabilities      14 

#define kTLVWhitePaper_Capability               15 

#define kTLVWhitePaper_Capability_Type          16 

#define kTLVWhitePaper_Capability_Enabled       17 

#define kTLVWhitePaper_Capability_KVPair        18 

#define kTLVWhitePaper_KVPair_Key               19 

#define kTLVWhitePaper_KVPair_Value             20 

Listing 17. The profile identifier and context tags used for a Weave representation of the test declaration 
for a sample network directory data. 
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CBOR 

The comparison with CBOR uses the tags specified shown in Listing 18 below. 

#define kTLVWhitePaper_Directory                 1 

#define kTLVWhitePaper_Fabric                    2 

#define kTLVWhitePaper_Fabric_Identifier         3 

#define kTLVWhitePaper_Fabric_GroupSecret        4 

#define kTLVWhitePaper_Fabric_Passwords          5 

#define kTLVWhitePaper_Fabric_Password           6 

#define kTLVWhitePaper_Devices                   7 

#define kTLVWhitePaper_Device                    8 

#define kTLVWhitePaper_Device_VendorID           9 

#define kTLVWhitePaper_Device_DeviceType        10 

#define kTLVWhitePaper_Device_SerialNumber      11 

#define kTLVWhitePaper_Device_PublicKey         12 

#define kTLVWhitePaper_Device_LastSeenTime      13 

#define kTLVWhitePaper_Device_Capabilities      14 

#define kTLVWhitePaper_Capability               15 

#define kTLVWhitePaper_Capability_Type          16 

#define kTLVWhitePaper_Capability_Enabled       17 

#define kTLVWhitePaper_Capability_KVPair        18 

#define kTLVWhitePaper_KVPair_Key               19 

#define kTLVWhitePaper_KVPair_Value             20 

Listing 18. The tags used for a CBOR representation of the test declaration for a sample network 
directory data. 

Note that the CBOR implementation may be less than ideal relative to its JSON equivalent due                
to the use of tags only for maps rather than tags plus integral keys (there is a fine distinction                   
there in CBOR, since tags are regarded as optional). 

Consequently, the Over-the-wire Size size shown in Table 4 above for CBOR may be slightly               
smaller than if a strict JSON-equivalent approach had been taken using integral keys. Examples              
of this approach are shown in Listing 19 and Listing 20 for QCBOR and tinycbor, respectively. 

// Group Secret 

 

QCBOREncode_AddBytesToMapN(&lEncodeContext, kTLVWhitePaper_Fabric_GroupSecret, 

(UsefulBufC){ &nl::Native::gDirectory.fabric.groupSecret[0], 16 }); 

 

// Passwords 

 

{ 

    QCBOREncode_AddTag(&lEncodeContext, kTLVWhitePaper_Fabric_Passwords); 

 

    QCBOREncode_OpenArray(&lEncodeContext); 

 

    { 

        QCBOREncode_AddSZString(&lEncodeContext, 

&nl::Native::gDirectory.fabric.password[0][0]); 
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        QCBOREncode_AddSZString(&lEncodeContext, 

&nl::Native::gDirectory.fabric.password[1][0]); 

    } 

 

    QCBOREncode_CloseArray(&lEncodeContext); 

} 

Listing 19. QCBOR CBOR encoding approach used for group secret and passwords sample data. 

// Group Secret 

 

lError = cbor_encode_tag(&lFabricEncodeContext, 

kTLVWhitePaper_Fabric_GroupSecret); 

TEST_ASSERT(lError == CborNoError); 

 

lError = cbor_encode_byte_string(&lFabricEncodeContext, 

&nl::Native::gDirectory.fabric.groupSecret[0], 16); 

TEST_ASSERT(lError == CborNoError); 

 

// Passwords 

 

{ 

    CborEncoder         lPasswordsEncodeContext; 

 

    lError = cbor_encode_tag(&lFabricEncodeContext, 

kTLVWhitePaper_Fabric_Passwords); 

    TEST_ASSERT(lError == CborNoError); 

 

    lError = cbor_encoder_create_array(&lFabricEncodeContext, 

&lPasswordsEncodeContext, CborIndefiniteLength); 

    TEST_ASSERT(lError == CborNoError); 

 

    { 

        lError = cbor_encode_text_stringz(&lPasswordsEncodeContext, 

&nl::Native::gDirectory.fabric.password[0][0]); 

        TEST_ASSERT(lError == CborNoError); 

 

        lError = cbor_encode_text_stringz(&lPasswordsEncodeContext, 

&nl::Native::gDirectory.fabric.password[1][0]); 

        TEST_ASSERT(lError == CborNoError); 

    } 

 

    lError = cbor_encoder_close_container(&lFabricEncodeContext, 

&lPasswordsEncodeContext); 

    TEST_ASSERT(lError == CborNoError); 

} 

Listing 20. Tinycbor CBOR encoding approach used for group secret and passwords sample data.  
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